
EE-559 Deep Learning

Mini-project 1:
Noise2Noise auto-encoder using PyTorch

Framework

Tom MERY 297217

Spring 2022

Contents

1 Introduction 1

2 Implementation 1

3 Building process of the model 1

3.1 Initial model . 1
3.1.1 Network architecture . 1
3.1.2 Loss function . 2
3.1.3 Training parameters . 2

3.2 Deep Vs. Wide network . 2
3.3 Number of channels in hidden layers . 2
3.4 Skip connections . 3
3.5 Mini-Batch-Size and Number of Epochs . 3

4 Final model and results 3

List of Figures

1 Performance of the model for different number of out channels in hidden layers . . .
2 Comparison of model with and without skip connections
3 Mean performance of the model for different mini-batch-size
4 Mean performance of the model for different number of epoch
5 Results of the final model on random samples from the validation set

1

1 Introduction

In this mini-project, a Noise2Noise model is implemented using the standard PyTorch Framework.
In this report, the experiments and their results that have been carried out during the building
process of the architecture are presented. The theoretical background about Noise2Noise auto-
encoder is available in the original paper [1].
The provided dataset for training is composed of two tensors of the size 50000 × 3 × 32 × 32
that corresponds to 50000 noisy pairs of images. Each of the 50000 pairs provided corresponds
to downsampled, pixelated images. The goal is to train a network that uses these two tensors to
denoise i.e., reduce the effects of downsampling on unseen images. A validation set of 1000 pairs
of images of the same size is also provided. The performance is assessed on Peak Signal-to-Noise
Ratio (PSNR) metric. It is known that a network with 8 convolutional layers achieves 24 dB PSNR
on the validation data provided and an extremely simple benchmark achieves 23 dB.

2 Implementation

The implementation of the model described in section 4 is available in the file model.py. In this
file a class Model that inherits from the base class torch.nn.Module (see https://pytorch.org/
docs/stable/generated/torch.nn.Module.html) is defined. The architecture of the model as
well as the optimizer and the loss used during training are defined as attributes of the class during
the class initialization. The forward function is explicitly defined as a class method. The Model
provides also 3 additional methods for loading, training and predicting. More comments about
implementation are available directly in the source code.

3 Building process of the model

In this section, the process of building the model is described in chronological order for clarity
purpose. This section is here to motivate the choices that have been made.

3.1 Initial model

In order to validate the implementation of the Model class, a first simple model is implemented.

3.1.1 Network architecture

The network of the first model is composed of two convolutional layers, with an arbitrary number
of channels, each followed by ReLU activation, and with two transposed convolutional layers, one
followed by ReLU activation, and the other one followed by sigmoid activation function in order
to range the output in value between 0 and 1, which facilitates the computation of the PSNR

1

https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html

metric. Weights and bias are initialized under the default method of PyTorch implementation (see
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html). Stride for each layer
are set to 1 as the input image is already of a small dimension (32x32). Table 1 in appendix recaps
the network architecture.

3.1.2 Loss function

The theoretical background from [1] shows that minimizing the expectation of the mean squared
error (squared L2 norm) between an image with a noise ✏ and the same image with a noise � is
formally equivalent to minimizing the expectation of the mean squared error (squared L2 norm)
between the image with a noise ✏ and the original clean image if ✏ and � are different additives,
unbiased, and independent noises. For this purpose the network is therefore trained under MSE
loss function.

3.1.3 Training parameters

The model is trained using ADAM optimizer with a learning rate of 1e-3. The mini-batch-size
is arbitrarily fixed to 50 and the model is trained over 10% of the full train set. With this
configuration, this initial model already achieves 23.88 dB PSNR on the validation dataset and
therefore the overall implementation is validated.

3.2 Deep Vs. Wide network

To choose the optimal number of layers for the network, multiple model with different number
of convolution layers are trained over the same conditions. In order to make their performance
comparable, when increasing the number of layers, the number of channels out are decrease such
that every model keeps approximately the same number of trainable parameters. Table 2 in
appendix recaps their structure, where the first half of the layers are convolution with kernel 3x3
followed by ReLU and the second half are transposed convolution with kernel 3x3 followed by
ReLU except for the last one followed by sigmoid. The results in table 2 in appendix are most
likely due to the fact that as the network gets deeper, the back propagated gradient becomes
smaller and smaller in the first layer. One could try batch-normalization for deeper model but in
this case, regarding PSNR after training a model with 4 layers seems to work pretty well. So to
keep things simple, a model with 4 layers is kept.

3.3 Number of channels in hidden layers

In the initial model Cout of layers 1 and 2 are both equal. This choice has been done arbitrarily
and it has been chosen to keep this structure as it was offering good results. However to increase
the performance one could try to increase the number of channels. A grid search (from 10 to 400
channels with a step of 10) has been done for the number of channels in the hidden layer. Every

2

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

models has been trained on 1 epoch over 10% of the train set with a mini-batch-size of 5. Figure
1 in appendix shows the results. One can see that from Cout = 100 the increase of performance
becomes less significant while the computational power to train increases drastically. Also choosing
a model with fewer parameters will prevent to a possible over-fitting when training over the full
train set. Therefore Cout = 100 for the hidden layers of the final model is chosen.

3.4 Skip connections

Skip connection between layer 1 and layer 4 is added to the initial model and then both models
are trained over 25 epochs under the same condition than described in section 3.1.3. After training
the initial model achieves 24.43 dB PSNR while the model with skip connection achieves 24.69 dB
PSNR. Figure 2 in appendix shows that skip connection makes the training loss decrease faster.
Thus skip connection method will be kept for the final model.

3.5 Mini-Batch-Size and Number of Epochs

A grid search is done for every mini-batch-size between 1 and 50 such that 50000 is a multiple
of the mini-batch-size. The initial model is trained on 1 epoch over the full train set 5 times for
every mini-batch-size and the mean PSNR is computed for each. Figure 3 in appendix shows the
results. Regarding the results a mini-batch-size of 8 is kept for the final model.
Similarly a grid search between 1 and 15 with a step of 1 is done for the number of epoch for
the same model with a mini-batch-size of 8 on the full train set. Figure 4 in appendix shows the
results. Regarding the results, a number of training epochs of 10 is kept for the final model since
beyond this point the model starts to overfit.

4 Final model and results

The architecture of the final network is shown in Table 3. MSE loss function as well ADAM
optimizer with a learning rate of 1e-3 are kept. To achieve the best performance (model saved in
bestmodel.pth) the model is trained over 10 epochs on the full dataset with a mini-batch-size of
8. The model has taken 197.95s to train on Google Colab’s GPU to finally achieves of performance
of 25.32 dB PSNR on the validation dataset. Results of the denoising on 3 images taken randomly
in the validation dataset are shown in figure 5 in the appendix.

References
[1] Jaakko Lehtinen; Jacob Munkberg; Jon Hasselgren; Samuli Laine; Tero Karras; Miika Aittala;

Timo Aila. Noise2Noise: Learning Image Restoration without Clean Data. https://arxiv.
org/abs/1803.04189. 29 Oct 2018.

3

https://arxiv.org/abs/1803.04189
https://arxiv.org/abs/1803.04189

Appendix

Layer Cin Cout Function Activation
1 3 32 Convolution kernel 3x3 ReLU
2 32 32 Convolution kernel 3x3 ReLU
3 32 32 Transposed Convolution kernel 3x3 ReLU
4 32 3 Transposed Convolution kernel 3x3 Sigmoid

Table 1: Architecture of the initial model

Nb of layers Channel out of each layer Nb of parameters PSNR after training
4 32,32,32,3 20259 23.69 dB
6 26,22,22,22,26,3 20533 22.63 dB
8 20,20,18,18,18,20,20,3 20729 20.91 dB
10 18,16,16,16,16,16,16,16,18,3 20131 20.10 dB
12 16,16,14,14,14,14,14,14,14,16,16,3 20253 19.31 dB

Table 2: Architecture with different number of layers

Figure 1: Performance of the model for different
number of out channels in hidden layers

Figure 2: Comparison of model with and
without skip connections

Layer Cin Cout Function Activation
1 3 100 Convolution kernel 3x3 ReLU
2 100 100 Convolution kernel 3x3 ReLU
3 100 100 Transposed Convolution kernel 3x3 ReLU
4 200 (skip connection) 3 Transposed Convolution kernel 3x3 Sigmoid

Table 3: Architecture of the final model

Figure 3: Mean performance of the model for
different mini-batch-size

Figure 4: Mean performance of the model for
different number of epoch

Figure 5: Results of the final model on random samples from the validation set

EE-559 Deep Learning

Mini-project 2:
Noise2Noise auto-encoder from scratch

Tom MERY 297217

Spring 2022

Contents

1 Introduction 1

2 Implementation 1

2.1 Module class . 1

2.2 Conv2d class . 2

2.3 NearestUpsampling class . 3

2.4 ReLU class . 3

2.5 Sigmoid class . 3

2.6 MSE class . 3

2.7 Sequential class . 4

2.8 SGD class . 4

2.9 Model class . 4

3 Results 4

List of Figures

1 Results of the final model on random samples from the validation set 6

1

1 Introduction

In this mini-project, a Noise2Noise model is to be implemented without using PyTorch framework.

Only PyTorch tensors object and all operations that can be called directly on them as Tensor

methods are allowed as well as torch.empty(), torch.cat(), torch.arange(), torch.nn.functional.fold()

and torch.nn.functional.unfold().

The main purpose of this report is to explain how the whole framework has been implemented,

how every block work together as well as to highlight the theoretical background when needed.

No experimentation has been conducted in this mini-project, the goal is simply to implement the

following network:

01 | Sequential(Conv2d(stride =2),
02 | ReLU(),
03 | Conv2d(stride =2),
04 | ReLU(),
05 | Upsampling ()
06 | ReLU(),
07 | Upsampling ()
08 | Sigmoid ())

The dataset remains the same as in the Miniproject 1.

2 Implementation

2.1 Module class

The Module class is the base class for every other class of the framework except for SGD. It is

defined as follow:

01 | class Module(object):
02 | def __init__(self):
03 | pass
04 |
05 | def forward(self , input):
06 | raise NotImplementedError
07 |
08 | def backward(self , gradwrtoutput):
09 | raise NotImplementedError
10 |
11 | def param(self):
12 | return []

Its methods will be overloaded in the child classes. For every class that inherits from Module:

1

• forward() gets for input and returns, a tensor. The input is retained in self.input when

necessary.

• backward() gets as input a tensor or a tuple of tensors containing the gradient of the loss with

respect to the module’s output, accumulates the gradient with respect to the parameters,

and returns a tensor containing the gradient of the loss with respect to the module’s input.

• param() returns a list of pairs (2-list) composed of a parameter tensor and a gradient tensor

of the same size. This list is empty for parameterless modules such as ReLU and Sigmoid.

2.2 Conv2d class

This class inherits from the Module class. The forward pass of this class is implemented as a matrix

operation, using unfold (as described in the project statement). An internal function _convolve()
(see implementation in model.py file) to do the convolution is therefore implemented and will be

useful for both forward and backward pass as both can be seen as convolution operations. The

forward pass simply does the convolution between the input of size N ⇥ Cin ⇥Hin ⇥Win and the

weight tensor of size Cout⇥Cin⇥K1⇥K2, retains the input in self.input and returns the output

of the convolution of size Cout ⇥ Cin ⇥ Hout ⇥ Wout Hout and Wout are calculated as described in

[1]. The weight tensor is initialized from U(�
p
k,
p
k) where :

k =
1

Cin ⇥
Q1

i=0 kernel_size[i]

as in its PyTorch counterparts.

The backward pass is also implemented using convolutions:

• The gradient of the loss with respect to the input can be seen as the convolution with stride

1 of a padded, dilated version of the output gradient with a flipped version of the weight

tensor (see [2]). The output gradient is padded by (kernel_size - 1) and dilated by (s -

1) where s is the stride used during the forward pass. The dilation and the padding can be

different along the two dimensions. The weight tensor is flipped by 180 degrees on the last

2 dimensions.

• The gradient of the loss with respect to the weights can be seen as the convolution with

stride 1 of the input tensor with a dilated version of the output gradient (see [2]). The

output gradient is also dilated by (s - 1) where s is the stride used during the forward pass.

• The gradient of the loss with respect to the bias is simply the sum of the output gradient.

2

2.3 NearestUpsampling class

This class inherits from the Module class. The forward of this class is implemented using repeat_
interleave. The backward is computed as the sum of the nearest element of the output gradient

which actually corresponds to a convolution (with a stride = scale_factor) between the output

gradient and a kernel of size scale_factorxscale_factor full of one. Again the convolution is

implemented as a matrix multiplication.

2.4 ReLU class

This class inherits from the Module class. The forward pass returns:

ReLU(x) = max(0, x) where: x is the input (1)

and the backward returns:

dl

dx
=

dl

do
⇥ do

dx
=

dl

do
⇥ f(x) where: f(x) =

(
0 if x 0

1 if x>0
(2)

where
dl
do is the gradient of the output given as an argument of the backward method.

2.5 Sigmoid class

This class inherits from the Module class. The forward pass returns:

o = S(x) =
1

1 + e�x
where: x is the input (3)

and the backward returns:
dl

dx
=

dl

do
⇥ do

dx
=

dl

do
⇥ e

�x

(e�x + 1)2
(4)

where
dl
do is the gradient of the output given as an argument of the backward method.

2.6 MSE class

This class inherits from the Module class. Compared to the other class this one takes two arguments

(x,y) as input of the forward method. During the forward pass, MSE is computed as:

MSE =
1

n

nX

i=1

(xi � yi)
2

(5)

and the backward pass simply returns its derivative with respect to the input:

dMSE

dx
=

2

n

nX

i=1

(xi � yi) (6)

3

2.7 Sequential class

This class inherits from the Module class. It expects a variable number of Module objects as

arguments and store them in a list (.modules attribute).

• The forward pass consists of calling the forward methods of each module in the list with the

output of the forward of the previous module.

• The backward pass consists of calling the backward methods of each module in the reversed

list with the output of the backward of the previous module.

2.8 SGD class

This class implements the optimizer that uses Stochastic Gradient Descent to optimize the param-

eter of the Model class. This class has two attributes:

• params that stores model to be optimized.

• lr that stores the learning rate used.

and two methods:

• zero_grad() that set the gradient tensors of each parameter of the model to zero.

• setp() that adds the gradient tensor multiplied by the learning rate to the respective pa-

rameter tensor.

2.9 Model class

This class inherits from the Module class. It is implemented exactly as in Miniproject 1 except

that this time the model is instantiated in the attribute .model which is a sequential object. The

forward and backward pass simply call respectively the forward and backward of self.model.

3 Results

The architecture of the network is shown in Table 1. The number of channel of the network

architecture is actually the same as the final model of the Miniproject 1. The learning rate has

been adjusted to 0.1, the SGD optimizer is used instead of ADAM and the skip connections which

are not present in this model. The network architecture is shown in Table 1 in appendix. To achieve

the best performance (model saved in bestmodel.pth) the model is trained over 50 epochs on the

full dataset with a mini-batch-size of 8. The model has taken 2760.95s to train on Google Colab’s

GPU to finally achieves of performance of 23.42 dB PSNR on the validation dataset. Results of

the denoising on 3 images taken randomly in the validation dataset are shown in figure 1 in the

appendix.

4

References
[1] Vincent Dumoulin; Francesco Visin. A guide to convolution arithmetic for deep learning.

https://arxiv.org/abs/1603.07285. 23 Mar 2016.

[2] Mayank Kaushik. Backpropagation for Convolution with Strides. https://medium.com/
@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710. 3

May 2019.

5

https://arxiv.org/abs/1603.07285
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710

Appendix

Layer Cin Cout Function Activation

1 3 100 Convolution kernel 2x2, stride 2 ReLU

2 100 100 Convolution kernel 2x2, stride 2 ReLU

3 100 100 Nearest Upsampling scale 2

3 100 100 Convolution kernel 3x3, stride 1, padding 1 ReLU

4 100 100 Nearest Upsampling scale 2

4 100 3 Convolution kernel 3x3, stride 1, padding 1 Sigmoid

Table 1: Architecture of the final model

Figure 1: Results of the final model on random samples from the validation set

6

	Introduction
	Implementation
	Building process of the model
	Initial model
	Network architecture
	Loss function
	Training parameters

	Deep Vs. Wide network
	Number of channels in hidden layers
	Skip connections
	Mini-Batch-Size and Number of Epochs

	Final model and results

