
ME-425 Model predictive control

Mini-project :
MPC controller for a rocket prototype

Group 18

Tom MERY 297217
Ramy CHARFEDDINE 295758

Contents

1 System Dynamics 1

2 Linearization 2

2.1 Deliverable 2.1 . 3

3 Design MPC Controllers for Each Sub-System 5

3.1 Deliverable 3.1 . 6

3.2 Deliverable 3.2 . 10

4 Simulation with Nonlinear Rocket 13

4.1 Deliverable 4.1 . 13

5 Offset-Free Tracking 14

5.1 Deliverable 5.1 . 14

6 Nonlinear MPC 16

6.1 Deliverable 6.1 . 16

List of Figures

1 System’s representation . 1

2 Terminal invariant set for sys_x . 8

3 Terminal invariant set for sys_y . 8

4 Terminal invariant set fro sys_z . 8

5 Terminal invariant set for sys_roll . 8

6 Simulation of discrete-time linear model sys_x in closed-loop starting at x0 = 5m . 9

7 Simulation of discrete-time linear model sys_y in closed-loop starting at y0 = 5m . 9

8 Simulation of discrete-time linear model sys_z in closed-loop starting at z0 = 5m . 10

9 Simulation of discrete-time linear model sysroll in closed-loop starting at γ0 = 45◦ . 10

10 Simulation of discrete-time linear model sys_x in closed-loop tracking a reference
at xref = −5m . 11

11 Simulation of discrete-time linear model sys_y in closed-loop tracking a reference
at yref = −5m . 12

12 Simulation of discrete-time linear model sys_z in closed-loop tracking a reference
at zref = −5m . 12

13 Simulation of discrete-time linear model sys_roll in closed-loop tracking a reference
at γref = 45◦ . 13

14 Simulation of the full nonlinear system tracking a given reference path with the four
MPC controllers . 14

15 Simulation of the system with the original MPC controller 15

16 Simulation of the system with MPC controller acting based on the state estimates
provided by the observer . 16

17 NMPC in nonlinear simulation under γmax = 15◦ . 18

18 NMPC in nonlinear simulation under γmax = 50◦ . 19

19 Merged lin. MPC in nonlinear simulation under γmax = 50◦ 20

Introduction

In the aerospace technology field, and many other engineering fields of study more broadly, the
control of a system’s trajectory is essential to achieve complex objectives. Also known as Thrust
Vector Control (TVC), this is carried out by independently controlling the thrust direction and
magnitude of each of the engines for a rocket for instance. To simulate this type of rocket’s control
in a simplified way, this project deals with the study of a small-scale prototype where the system
is replaced by a high-performance drone racing propellers. A non-exhaustive explanation of the
working principle of such system is given later in the report.

The under-constraints control of this drone is achieved through the development of Model Predic-
tive Control (MPC) methods for different situations and different control objectives. This report
tackles the design of MPC regulators and MPC tracking controllers for the linearized system. As
well as, the simulation of the nonlinear rocket behaviour subject to the controllers previously de-
signed. The offset-free tracking method is also addressed. Finally, an approach to non-linear MPC
is given.

1 System Dynamics

The system’s dynamics is determined according to two reference frames. The first one is the body
frame (subscript b) with the origin Ob attached to the center of mass of the rocket (fig.1). The
second one is the world frame (subscript w) which is a fixed, inertial frame.

Figure 1: System’s representation

The non-linear model is derived according to 12 states
represented by the state vector :

x =
[
ωT φT vT pT

]T
[x] =

[
rad/s rad m/s m

]T (1)

where ω =
[
ωx ωy ωz

]T are the angular ve-
locities about the body axes. The Euler angles
φ =

[
α β γ

]T represent the attitude of the body
frame with respect to the world frame. The ve-
locity and position, v =

[
vx vy vz

]T and p =[
x y z

]T , are expressed in the world frame with
v = ṗ.

The control vector is denoted by u and given in eq.2. The
prototype is controlled through the command servo angles δ1 and δ2, as well as the speed of the

1

bottom and top propellers, P1 and P2 respectively. The propellers counter-rotate such that their
torques cancel each other out in stationary flight. Being mounted on gimbals, the propellers can be
tilted by the two servo motors. For a sake of convenience, one will consider the propellers’ average
command speed as an input Pavg =

P1+P2

2
as well as the command speed difference Pdiff = P2−P1,

which gives the following input vector :

u =
[
δ1 δ2 Pavg Pdiff

]T
, [u] =

[
rad rad % %

]T (2)

The non-linear model is derived considering that the system is only subject to gravity mg, thrust
Fb, and total torque Mb including the torque due to the thrust vector and the torque M∆ caused
by the speed difference between the two propellers. By deriving all the dynamic equations given
and explained in the description of the project [1], the non-linear model can be represented as :

ẋ = f(x,u) =


ω̇

φ̇

ṗ

v̇

 =


J−1 (Mb − ω × (Jω))

R(φ) · ω
v

Twb·Fb

m
− g

 (3)

with R(φ) = 1
cosβ

 cos γ − sin γ 0

sin γ cos β cos γ cos β 0

− cos γ sin β sin γ sin β cos β

 and Twb being the direction cosine matrix

from body to world frame. Both the thrust Fb and the torque M∆ vectors are determined by the
gimbal angles such that :

Fb

∥Fb∥
=

M∆

∥M∆∥
=

 sin δ2

− sin δ1 cos δ2

cos δ1 cos δ2

 (4)

2 Linearization

Once the system’s non-linear model is derived, and because a linear model is easier to understand
and often necessary for most control system design methods, a linearization of the system is
performed. Linearization is used to give important information about how the system behaves
in the neighborhood of equilibrium points. Typically, one can learn whether the point is stable
or unstable, as well as something about how the system approaches (or moves away from) the
equilibrium point. By using the trim Matlab function, a steady-state state and input pair (xs, us)
is found and is equivalent to finding the state and input pair for which :

f(xs, us) = 0 (5)

2

Linearization around this equilibrium point is then performed, corresponding to the following
system’s transformation{

ẋ(t) = f [x(t), u(t), t]

y(t) = g[x(t), u(t), t]
→

{
˙̃x(t) = A(x(t)− xs(t)) +B(u(t)− us(t))

ỹ(t) = C(x(t)− xs(t)) +D(u(t)− us(t))
(6)

with,

A = ∂f(x,u)
∂x

∣∣∣
xs,us

B = ∂f(x,u)
∂u

∣∣∣
xs,us

C = ∂g(x,u)
∂x

∣∣∣
xs,us

D = ∂g(x,u)
∂u

∣∣∣
xs,us

(7)

2.1 Deliverable 2.1

By performing the linearization step, the nominal point to linearize around is given as

xs =
[
0 0 0 0

]T
us =

[
0 0 56.67 0

]T (8)

The matrices A, B, C, D are then given using the linearize Matlab function and the system can
be decomposed into the following four independent continuous time models

1. sys_x: Thrust vector angle δ2 to position x


ω̇y

β̇

v̇x
ẋ

 =


0 0 0 0

1 0 0 0

0 9.81 0 0

0 0 1 0




ωy

β

vx
x

+


−55.68

0

9.81

0

δ2


y1
y2
y3
y4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




ωy

β

vx
x


(9)

3

2. sys_y: Thrust vector angle δ1 to position y
ω̇x

α̇

v̇y
ẏ

 =


0 0 0 0

1 0 0 0

0 −9.81 0 0

0 0 1 0




ωx

α

vy
y

+


−55.68

0

−9.81

0

δ1


y1
y2
y3
y4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




ωx

α

vy
y


(10)

3. sys_z: Average throttle Pavg to height z(
v̇z
ż

)
=

(
0 0

1 0

)(
vz
z

)
+

(
0.1731

0

)
Pavg(

y1
y2

)
=

(
1 0

0 1

)(
vz
z

) (11)

4. sys_roll: Differential throttle Pdiff to roll angle γ(
ω̇z

γ̇

)
=

(
0 0

1 0

)(
ωz

γ

)
+

(
−0.104

0

)
Pdiff(

y1
y2

)
=

(
1 0

0 1

)(
ωz

γ

) (12)

The decomposition of the main system into 4 independent sub-systems can be explained in an
intuitive physical way by looking at the effect of each of the inputs (δ1, δ2, Pavg, Pdiff) on the
rocket’s trajectory and it’s orientation.

1. sys_x: First, let’s consider the case where only δ2 is imposed. In this case, one knows that
the deflection angle δ2 of servo 2 corresponds to a rotation of the rocket around axis yb.
That’s why the angular velocity ωy about the y body axis is sufficient. Besides, this actually
corresponds to a rotation of β of the body frame with respect to the world frame. Having
the rocket rotated and in the plan x-z means that under the activation of the propellers, the
system will move in the x-z plan. Therefore, by projection, one only needs the x-coordinate
to determine the position of the rocket. The velocity along the x-axis is then deduced from
the x-position. Thus, under the effect of δ2, the system can be fully represented by the state
parameters ωy, β, vx, x.

2. sys_y: Similarly, the effect of the deflection angle of servo 1, δ1 corresponds to a rotation
about the body axis xb. Thus, if one keeps the same reasoning as before, the rocket will
move along the y-z plane and therefore the system can be fully represented by ωx, α, vy, y.

4

3. sys_z: If only the propellers are activated and there is no throttle difference between the
motors and no tilting by servo 1 and 2 neither, then the rocket remains on its zb axis. Since
no rotation occurs around the body frame nor around the world frame then the system is
only determined by the speed and position along z body axis.

4. sys_roll: Let’s consider now that only a throttle difference between the motors exists. Then,
the rockets stays on the z body-axis since no tilting occurs under zero servo deflection angles.
However, in this case, the rocket will rotate around it’s z-body axis and consequently, the
body frame will also rotate with respect to the world frame. Thus, in this case, the system
is described by ωz and γ.

3 Design MPC Controllers for Each Sub-System

Once the system is linearized around the nominal point, decomposed and discretized, the objective
is to design a recursively feasible, stabilizing MPC controller for each of the subsystems. Two
control cases are considered in this part of the report. First, the design of a MPC regulator to
ensure the converges of each system to the origin. Then, the design of a MPC tracking controller
where in addition to feasibility, the controller has to ensure the stabilization to a point of reference.
In general case, the design of a MPC controller is equivalent to finding the optimal input sequence
that will minimize a cost function (eq.13) while ensuring states and inputs’ constraints, stabilization
and maximization of the feasible set.

V ⋆
N (x0) = min

x,u

N−1∑
i=0

I (xi, ui) + Vf (xN)

s.t. xi+1 = f (xi, ui)

(xi, ui) ∈ X,U
xN ∈ Xf

(13)

In eq.13, X,U are the state and input constraints set respectively. I (x, u) corresponds to the cost of
being in state x and applying input u. N is the horizon length. One knows that the feasibility and
stability of systems is ensured for an infinite horizon optimal control. However, such controller
being impossible to design as it is computationally intractable, MPC as finite horizon optimal
control is used as an alternative solution. Thus, to simulate the infinite horizon behaviour, a
terminal cost Vf (xN) and a terminal constraint set Xf are introduced to explicitly ensure feasibility
and stability. In this particular application, as it is not a real time MPC implementation, the time
horizon is mainly chosen in order to keep the computation time under control. Computation time
can be reduced by limiting the time horizon of the prediction. But limiting the time horizon results
in sub optimal control and infeasibility can occur if the terminal set is dropped. Thus a trade-off
has to be made. Multiple simulations have been carried out with increasing values of H and N
consequently. The horizon length has then been chosen as the smallest value ensuring the respect
of the required settling time (8s) for all states variables. With a sampling time Ts = 1

20
s, the

5

horizon length in seconds is set to H = 3s by experimenting. Giving N = H
Ts

= 60. This value of
the horizon length is considered as a fixed value for all following controllers.

3.1 Deliverable 3.1

Let’s first handle the case where the rocket has to head to the origin. To do so, given linear system’s
dynamics and linear input and state’s constraints, a linear MPC with quadratic cost controller is
implemented. The optimization problem is expressed as

J⋆ (x) = min
x,u

N−1∑
i=0

xT
i Qxi + uT

i Rui + xT
NQfxN

s.t. xi+1 = Axi +Bui

(xi, ui) ∈ X = {x|Fx ≤ f} ,U = {u|Mu ≤ m}
xN ∈ Xf

(14)

As explained earlier, this approach simulates the infinite horizon problem separated into two sub-
problems. The first right part corresponds to a finite horizon optimal control taking into account
the constraints. The second part of the cost function is equivalent to an unconstrained LQR start-
ing from state xN and approximating the infinite horizon cost. The terminal penalty weight Qf is
the solution of the discrete-time algebraic Ricatti equation and it’s a parameter determining the
terminal invariant set. Its computation is explained a bit later. The separation into sub-problems
is at the core of the design procedure to ensure recursive constraint satisfaction.

The penalty weights Q and R are the main tuning parameters. The value assigned to each of them
ends up in a trade-off between performance and the size of the terminal set. The smaller is the
terminal set, the higher is the likelihood to end up in an infeasible state. Therefore, to ensure a
maximization of the feasible set, the penalty of the states and inputs is chosen to be the smallest
possible while ensuring the stabilization under the settling time requirement. The weights Q and
R are first set to the Identity matrix with the right dimensions. Then, depending on the behaviour
of the system, higher weights are assigned in the Q matrix to the states that need more penalty or
in other words more control. Typically, for the systems sysz and sysroll, we give more importance
to achieve the origin than the speed at which we achieve it, so more weight is given to z and γ.
As for the choice of the R matrix, in the absence of any specification given in the guidelines on
input’s cost importance, we keep it set to identity for all subsubsystems.

Qx,y =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Qz,roll =

[
1 0

0 100

]
Rx,y =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Rz,roll =

[
1 0

0 1

]

(15)

6

Given these weight matrices, the MPC controllers are designed using the Matlab optimization
toolbox YALMIP. To do so, input and state constraints matrices need to be determined for each
subsystem such that

Fx ≤ f Mu ≤ m (16)

Because of the approximate linearization that is done, constraints on the maximum angles that
the rocket can take need to be satisfied

|α| ≤ 5◦ = 0.0873rad

|β| ≤ 5◦ = 0.0873rad
(17)

which ends up giving

Fx,y =

[
0 1 0 0

0 −1 0 0

]
fx,y =

[
0.0873

0.0873

]
(18)

As their is no state constraints for the z and roll subsystems, the matrices Fz, Froll, fz and froll don’t
have to be explicitly defined. On the other hand the input constraints coming from a mechanical
and engineering perspective are summed up as

|δ1| ≤ 15◦ = 0.26rad

|δ2| ≤ 15◦ = 0.26rad

50% ≤ Pavg ≤ 80%

−20% ≤ Pdiff ≤ 20%

(19)

The separation into independent subsystems, is reflected by the following input constraints on the
inputs of each subsystem

Mx,y =

[
1

−1

]
mx,y =

[
0.26

0.26

]
Mz =

[
1

−1

]
mz =

[
80− Pavgs

−50 + Pavgs

]

Mroll =

[
1

−1

]
mroll =

[
20

20

] (20)

On the other hand, the terminal set and terminal weight Qf are determined using MPT3. By using
this method, one doesn’t have to rewrite all the algorithm to find the terminal set by iterating
the space of constraints over the closed loop system Acl = (A + BK) (where K is the feedback
matrix of the LQR controller with cost Q and R) as it is automatically done by the toolbox. The
invariant set for each of the subsystems is given in fig.2 to 5.

7

Figure 2: Terminal invariant set for sys_x

Figure 3: Terminal invariant set for sys_y

Figure 4: Terminal invariant set fro
sys_z

Figure 5: Terminal invariant set for
sys_roll

Simulating the independent subsystems’s response for 15 seconds gives the following results (fig.6-
9). That’s for a stabilization to the origin, with a starting point 5 meters away from the origin for
x, y and z, and 45◦ for roll. One can notice that all 4 subsystems converge to 0 under 8 seconds.

8

One can however notice a slight overshoot on the z and directions which are not critical for this
application.

Figure 6: Simulation of discrete-time linear model sys_x in closed-loop starting at x0 = 5m

Figure 7: Simulation of discrete-time linear model sys_y in closed-loop starting at y0 = 5m

9

Figure 8: Simulation of discrete-time linear model sys_z in closed-loop starting at z0 = 5m

Figure 9: Simulation of discrete-time linear model sysroll in closed-loop starting at γ0 = 45◦

3.2 Deliverable 3.2

Let’s now handle the case where each system is tracking a reference. For simplicity the terminal
set is dropped from now and through all the following. The tracking problem can actually be seen
as the design of a MPC regulator with a coordinate transformation. The main adjustment that has
to be implemented concerns the delta formulation. Thus, one seeks a control input corresponding
to the steady state leading to the reference target .

10

xs = Axs +Bus

r = CxS

Fxs ≤ f

Mus ≤ m

(21)

Where r is the reference. The delta formulation states that ∆x = x − xs and ∆u = u − us. By
inserting these in eq.14, the optimisation problem is expressed as

J⋆ (x) = min
x,u

N−1∑
i=0

∆xT
i Q∆xi +∆uT

i R∆ui +∆xT
NQfxN

s.t. ∆x0 = ∆x

∆xi+1 = A∆xi +B∆ui

Hx∆xi ≤ kx −Hxxs

Hu∆ui ≤ ku −Huus

(22)

Here the objective is first to find the optimal sequence of ∆u⋆ then deduce from it the input
applied to the system as u⋆

0 = ∆u⋆+us. The implementation of the MPC controller is the same as
previously using YALMIP and without any change in the tuning parameters. The state evolution
obtained when simulating tracking for the different subsystems is given in fig.10 to fig.13.

Figure 10: Simulation of discrete-time linear model sys_x in closed-loop tracking a reference at
xref = −5m

11

Figure 11: Simulation of discrete-time linear model sys_y in closed-loop tracking a reference at
yref = −5m

Figure 12: Simulation of discrete-time linear model sys_z in closed-loop tracking a reference at
zref = −5m

12

Figure 13: Simulation of discrete-time linear model sys_roll in closed-loop tracking a reference
at γref = 45◦

4 Simulation with Nonlinear Rocket

Now that a controller has been implemented for each of the subsystems, it can be interesting to
see how by merging the four of them, one can make the non linear rocket track a given path from
the origin as initial state.

4.1 Deliverable 4.1

Running the linear controllers in the nonlinear simulation results in a model mismatch for the
predictive controllers. Besides, with the previously chosen weight matrices, infeasibility of the linear
controllers and bad tracking performance was encountered. To avoid angle constraint violations
(α, β), the weights on the angular velocities (ωx, ωy) are increased. Moreover, more weight is given
to the states x, y, z, γ to ensure reference tracking. This leads to the following matrices where R
remains unchanged for all subsystems.

Qx,y =


5 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10

 Qz,roll =

[
1 0

0 250

]
(23)

The simulation results in fig.14 show that the tuning parameters seem to offer good performance
as the rocket is able to follow the desired path with only a small error between the real and the
ideal path. One can also notice on the states graphs evolution, that the reference’s tracking is
achieved with a small delay due to non-real time control. This doesn’t seem to affect much the
tracking of the desired path on the animation so these results can be considered as acceptable.

13

Figure 14: Simulation of the full nonlinear system tracking a given reference path with the four
MPC controllers

5 Offset-Free Tracking

In this part of the project, the mass of the rocket is changed and this has an influence on the
dynamics of the system in the z-direction which is now given as :

x+ = Ax+Bu+Bd (24)

with d a constant unknown disturbance. The objective is therefore to design a MPC controller
using what has been done in previous sections and finding the control inputs that use a disturbance
estimate to remove the offset and ensure offset-free tracking of a reference.

5.1 Deliverable 5.1

One first designs a state and disturbance estimator based on the augmented model (eq.25).[
x̂k+1

d̂k+1

]
=

[
A Bd

0 I

][
x̂k

d̂k

]
+

[
B

0

]
uk +

[
Lx

Ld

](
Cx̂k + Cdd̂k − yk

)
(25)

x̂ and d̂ are the state and disturbance estimates respectively. The error dynamics is given as

14

[
xk+1 − x̂k+1

dk+1 − d̂k+1

]
=

([
A Bd

0 I

]
+

[
Lx

Ld

] [
C Cd

])[xk − x̂k

dk − d̂k

]
δ(k + 1) = (Ā+ L̄C̄)δ(k)

(26)

To design such Luenberger Observer, one should find the observer gain L̄ such that the error
dynamics converges to zero. This is achieved by choosing the suitable observer eigenvalues ensuring
fast dynamics, stability and error minimization using the duality principle between a controller and
an observer. Thus, the observer eigenvalues can be chosen as the same as the controller eigenvalues
given by solving :

det(λI − A−BK) = 0 (27)

However, in practice, the observer’s dynamics should be faster than the state feedback controller’s
dynamics to compensate for the estimation error on the controller performance. The set of poles
to improve the observation performance is therefore usually chosen as being 20% of the poles of the
controller. Thus, the pole placement of the observer loop system Ā + L̄C̄ being a tuning param-
eter, it is chosen as [0.4, 0.5, 0.6]. This choice is one possible solution giving good simulation results.

On the other hand, the tuning parameters N , Q and R remain the same as in previous section as
there is no change of the objective. Indeed, the goal is still to have the rocket following a reference
path which means that one needs to modify the system steady-state and target to take into account
the effect of disturbance when designing the MPC controller. Besides, note that since an observer
to estimate the offset and the state of the system is used, constraint satisfaction can no longer be
ensured and the terminal set is hence not added.

Figure 15: Simulation of the system with the original MPC controller

15

Figure 16: Simulation of the system with MPC controller acting based on the state estimates
provided by the observer

The simulation results show first the impact of changing the mass on the original controller (i.e
without disturbance rejection) (fig.15), then the effect of the new controller achieving off-set free
tracking when disturbance rejection is added (fig.16). One can notice that in the first case the z
state is always shifted by a constant disturbance (∼ 0.2m) from the reference path, whereas this
error is barely noticeable when using a controller rejecting the disturbance. However, note that,
in both cases, when the rocket gets heavier, it makes sense to have larger values of Pavg as the
propellers will have to turn faster and thus give more thrust to compensate for the extra mass.

6 Nonlinear MPC

In this part of the project, the objective is to go back to the non-linear model of the system (eq.3)
and implement a nonlinear MPC controller for the path tracking problem. By doing so, one will
then be able to compare this controller to the previously designed linear one and determine how
is the linearization process impacting the performance of the controller.

6.1 Deliverable 6.1

First of all, when designing a NMPC controller, one should pay attention to the the computation
time which can grow rapidly leading to uncontrolled situation. Consequently, the time horizon is
reduced to H = 1s equivalent to N = 1

0.1
= 10. Designing a NMPC controller relies on the same

theory as for linear MPC. The tracking controller is thus designed by solving the following non
linear optimization problem,

16

J⋆ (x) = min
x,u

N−1∑
i=0

(xi − xref)
TQ(xi − xref) + uT

i Rui + (xN − xref)
TQf (xN − xref)

s.t. x0 = X0

xi+1 = Fdiscr(xi, ui)

(xi, ui) ∈ X = {x|Fx ≤ f} ,U = {u|Mu ≤ m}

(28)

The only remaining state constraint is |β| ≤ 85◦ to safe numerical values and all input constraints
are unchanged (eq.19)

Let’s first explain what Fdiscr corresponds to. Having a continuous time non-linear model, one
should discretize it in order to design a NMPC controller for it. The two most popular methods
to integrate such non-linear systems are the Euler method and the Runge-Kutta 4 (RK4). This
one being an approximation of order 4, it’s gives more accurate discretization and is therefore
performed in this case for a sampling period Ts = h = 0.1s. The basic principle is to find the next
state xn+1 given the current one xn and a weighted average of 4 increments (eq.29).

K1 = f(xn, un)

K2 = f
(
xn +

h
2
·K1, un

)
K3 = f

(
xn +

h
2
·K2, un

)
K4 = f (xn + h ·K3, un)

Fdiscr(xn, un) = xn+1 = xn +
h
6
(K1 + 2K2 + 2K3 +K4)

(29)

Concerning the stage cost, having a tracking problem to solve, it takes into account the tracking
residual corresponding to the difference between the predicted x and the desired trajectory states
xref . As for the linear tracking case, the stage cost penalizes the squared tracking residual as
well as the control input. Besides, note that since the objective is to control the rocket’s position
[x, y, z] and angle γ, the reference xref only applies to these states and is considered as 0 for all
remaining 8 states. As for linear MPC, the design of the NMPC controller relies on the tuning of
the penalty weight matrices Q and R. Q is diagonal sparse matrix.

Q = diag [5/10, 5/10, 1/250, 1/10, 1/10, 250/250, 1/10, 1/10, 1/250, 10/10, 10/10, 250/250] (30)

R =


1/10 0 0 0

0 1/10 0 0

0 0 1/250 0

0 0 0 1/250

 (31)

The tuning weights are purely based on simulation experiments and are only one possible choice
among several others. However, the main idea behind this choice is to take the initial weights set

17

for the linear MPC design and scale them. In other words, in the linear case the 4 subsystems were
independent and therefore giving more importance to one of the states was only impacting the be-
haviour of the states part of the same subsystems. Having now a unique weight matrix penalizing
the 12 states at the same time, each state will have an influence on all the others. That’s why to
keep the same behaviour as the linear case, which gives a descent solution for the tracking problem,
the weights for each state is the weight set in the linear case scaled by the maximum weight among
all states in each subsystem. To keep a certain consistency, the same scale is applied to the R
matrix. However, remember that in the NMPC design we are not dealing with 4 subsystems but
indeed a unique 12 states and 4 inputs’ system.

Finally, since the time horizon is reduced, the control prediction operates on a reduced period of
time and the controller "sees" in a smaller time in the future. Consequently, the error between the
prediction and reality will increase negatively influencing the performance of the controller and the
system’s stability. To compensate for this shortage of time horizon, the design of a terminal cost is
helpful. To design it, one first needs to linearize the system as it has been done in the beginning of
the project and use the same approach as for the linear MPC case by designing a LQR controller.
The weight matrices are this time the above Q and R matrices (eq.30, eq.31). This is how Qf is
computed. Simulation results are represented in fig.17 to fig.19.

Figure 17: NMPC in nonlinear simulation under γmax = 15◦

18

One can notice that the NMPC controller provides a descent solution to the reference tracking
problem. The results are quite similar to the linear MPC as expected since the tuning parameters
are chosen on the same principle. Notice as well the delay between the reference path and the
real behaviour of states which is due to the settling time and the computation time of the controller.

When changing the maximum roll reference to |γref | = 15◦, the NMPC controller continues to give
a proper solution to the path tracking problem. However, when using the linear MPC controller
on the non linear system, the feasibility and stability of the system wasn’t ensured and an increase
of the angular velocity weights from 5 to 50 is needed to avoid angle constraint violations only (as
we want to compare the performances of the MPC with the NMPC, the other weights of the MPC
are kept). Regarding fig.18 and fig.19 it is clear that the NMPC performs much better than the
MPC under this more extreme reference request.

Figure 18: NMPC in nonlinear simulation under γmax = 50◦

19

Figure 19: Merged lin. MPC in nonlinear simulation under γmax = 50◦

Conclusion

This report presents an approach to Thrust Vector Control for a rocket prototype through the
design of MPC controllers to achieve different control objectives. Starting with the linearization
of the system, a linear MPC controller is designed to make the rocket stabilize to the the origin
while satisfying input and state constraints. The reference tracking problem is also tackled. Once
through the design of a MPC controller for the linearized system including disturbance rejection
or not. And once through the implementation of a non-linear MPC controller directly operating
on the non-linear system’s model. Overall, the design of these controllers is based on the tuning
of parameters according to the simulation results obtained for the different cases. Therefore, one
should be aware that the proposed solutions are only possible options among several others.

References
[1] Colin Jones. Model Predictive Control: Mini-Project. EPFL, 2021.

20

	System Dynamics
	Linearization
	Deliverable 2.1

	Design MPC Controllers for Each Sub-System
	Deliverable 3.1
	Deliverable 3.2

	Simulation with Nonlinear Rocket
	Deliverable 4.1

	Offset-Free Tracking
	Deliverable 5.1

	Nonlinear MPC
	Deliverable 6.1

