
Machine learning in finance: forecasting and trading
Tom MERY Maxime LELIEVRE Matteo PEDUTO

Abstract—Over the last few years, the cryptocurrencies became
increasingly popular among the investors despite their sometimes
high volatiliy. Likewise, machine learning has become a popular
tool for improving decision making in financial markets. This pa-
per presents the implementations and performances’ comparison
of different machine learning models on several assets. The results
suggest that the combination of models optimized on different
assets of the same type reaches the best trading performances.

I. INTRODUCTION

Over the last few years, the cryptocurrencies became in-
creasingly popular as an investment product and for a portfolio
diversification strategy. In the period from February 2016 to
December 2022, the estimated market capitalization of all
cryptocurrencies passed from 27 to 800 billion USD and the
24 hour average trading volume of all cryptocurrencies already
reached more than 100 billion USD in 2021. A still increasing
body of literature focused on the pertinence of the efficient
market hypothesis (EMH), as proposed by Fama (1970) [1],
on the famous Bitcoin, see for example Urquhart (2016) [2],
Nadarajah and Chu (2017) [3], Bariviera (2017) [4], Sensoy
(2018) [5] and Wildi et al.(2019) [6]. In essence, the EMH
postulates that efficient markets reflect all past, public or public
and private information in market prices. Verification of the
EMH is important for market participants as it implies that
such information cannot be used to make persistent profits
on trading on the market. In summary, recent research on the
topic is inconclusive as to whether Bitcoin markets are efficient
under the EMH or not. Wildi et al.(2019) results suggest that
Bitcoin markets are becoming less rather than more efficient
towards the sample end of their data (2019).

In this context, we propose in the continuation of Wildi
et al.(2019) to extend their approach to other cryptocurrencies
and to commodities and market indices to see weather positive
trading performances can be achieved with machine learning
models.

Four different machine learning methods are implemented
and applied on three types of assets (cryptocurrencies, com-
modities and market indices) with three different assets for
each. We further analyze weather the combination of several
models trained on one data set gives better results than the
results of the best model only. We determine also if the
combination of the best models trained on several assets of the
same type gives better results than the results of the best model
trained exclusively on the asset. We test their performances
with several trading performance metrics.

After a presentation of the used data, the pre-processing step
and an explanation of some financial prerequisites, we start
our analysis by unfolding the four machine learning methods
implemented and then discuss the results.

II. DATA ANALYSIS

A. Data collection

The project thus focuses on nine different assets divided
in three categories (cryptocurrencies, commodities and market
indices). The same time period has been considered with
respect to the category.

Cryptocurrencies Commodities Market Indices
Assests 1 Bitcoin Gold S&P 500
Assests 2 Ethereum Natural Gas CAC40
Assests 3 Ripple Oil SMI
Period considered 2017-11-09 2012-12-13 2012-12-13

to to to
2022-12-13 2022-12-09 2022-12-12

TABLE I
THE NINE ASSETS DIVIDED BY TYPE

The collection of data has been performed on different
web sites herafter detailed with the assets’ symbol used in
the code.
Bitstamp [7]: Bitcoin (BTC-USD), Ethereum (ETH-USD),
Ripple (XRP-USD)
Nasdaq [8]: Natural Gas (NYMEX-NG), Gold (LBMA-
GOLD), Oil (OPEC-ORB), S&P500 (SP500)
Yahoo Finance [9]: CAC40 (CAC40), SMI (SMI)

In time series machine learning, the data cannot be split in
any ways. In fact, it is important to maintain the chronological
aspect. The train set must be observed before in time than the
validationa and test set. This characteristic makes complicated
the cross validation process. This is why the data has been
split chronologically. The first half for the training, the third
quarter for the validation and the last quarter for the testing.
The validation set is used to tune the hyper-parameters.

B. Data pre-processing

The different data sets extracted give several information
about an assets’ value on each day (open, close, adjusted close
prices,...). The models are trained to forecast the log-returns
of the open price of the assets as it is the most realistic one
if one wants to take position based on the model’s prediction.
The open price reflects the price at which an asset first trades
when the market opens. The log return at time t is computed
as follow:

rt = log

(
Pt

Pt−1

)
(1)

Going through the log return allows to transform the time
series such that the resulting financial data become more
stationary from a temporal perspective, meaning even if we
shuffle the data order, we will still be able to properly train the



model and achieve successful test performance. It also allows
to determine right away if the asset’s price has increased or
decreased over the day, by checking the sign of the log return,
which is what matters in a trading perspective.

Moreover, the models are using a determined number of
lags. This latter represents the number of consecutive log-
returns considered to predict the asset’s log-return at time
t+1. The number of lags is determined by applying the auto-
correlation function (ACF) on the log returns, see Fig.1. The
ACF defines how data points in a time series are related,
on average, to the preceding data points. In other words, it
measures the self-similarity of the signal over different delay
times. This is performed because, under the assumption that
the time-series is gaussian and stationary, a linear forecasting
model should reach a better accuracy if a pattern can be
identified.

Fig. 1. Auto-correlation function applied on the log-returns of Bitcoin

Thus the data set is first transformed with the log returns
before being split between the train, validation and test set.
Finally, it is gathered in sequences of a chosen number of
lags. For example, for 6 lags, one input is a sequence of 6
consecutive log returns and the goal is to forecast the following
log return.

III. FINANCIAL PREREQUISITES

Before unfolding the implemented models, some financial
basics must be explained to ensure the reader’s understanding
of the methodology used. Trading is the buying and selling
of financial instruments in order to make a profit. These
instruments range from a variety of assets that are assigned
a financial value that goes up and down – and you can trade
on the direction they take. Trading is opposed to investing,
which suggests a buy-and-hold strategy and we will use it to
evaluate our trading strategy. A good trade then consists of
correctly predicting if the financial asset’s value will increase
or decrease and take the corresponding action. If one predicts
it to increase, one will buy the asset to sell it later at a higher
price. Conversely, if one predicts the value to decrease, one
will sell the asset -it is called to short- and buy it later for a
lower price.

We here give more details about the efficient market hy-
pothesis (EMH) mentioned in the introduction. The EMH

postulates that efficient markets reflect all past information
(weakform), public information (semi-strong form), or public
and private information (strong form) in market prices. Some
findings suggest that Bitcoin markets, while inefficient in
their early days, transitioned into efficient markets recently.
Others find support for the adaptive market hypothesis (AMH),
an alternative theory that builds on evolutionary principles
and assumes markets and market efficiency evolve over time.
Verification of the EMH is important for market participants
as it implies that such information cannot be used to make
persistent profits on trading on the market.

The trading strategy followed during this analysis consists
of selling or buying based on the predictions output by the
implemented models in a horizon of one day. It is useless in
financial prediction to measure a model performance through
the value of the loss function used during the training (here
MSE for neural nets). Thus, the performances of the models
are assessed using three financial metrics hereafter explained.

A. Hit rate

The hit rate can be considered as the accuracy of the models.
In trading, the hit rate is typically defined as the number of
winning or profitable trades over a period of time for a trading
strategy, divided by the total number of trades over the same
period, and expressed as a percentage. It is determined by
checking the sign of the predicted log return with respect to
the sign of the target, expressed as a log return too. So if the
predicted and the target log-returns have the same sign then it
is considered as a profitable trade.

Hit Rate =

∑
(sign(output) · sign(target) >= 0)

len(output)
(2)

B. Annualized Sharpe ratio

The Sharpe ratio compares the return of an investment with
its risk. Sharpe ratios above 1 are generally considered “good,”
offering excess returns relative to volatility.

To calculate the Sharpe ratio, which is a measure that
balances drift and volatility aspects, investors first subtract the
risk-free rate Rf from the asset’s rate of return Ra, often
using U.S. Treasury bond yields as a proxy for the risk-free
rate of return. In this analysis, it is set up to 0 for simplicity.
Then, the expectation of the excess return is divided by the
standard deviation of the asset’s excess return σa. For the
annualized sharpe ratio, it is almost the same but the numerator
is multiplied by the square root of the number of periods in a
year (365 for the cryptocurrencies and 252 for the commodities
and market indices due to the fact that the markets of these
two latest are open only during the working days).

Annualized Sharpe Ratio =
√
nb periods · E[Ra −Rf ]

σa
(3)

C. Maximum Drawdown

The maximum drawdown (MDD) is the maximum observed
loss from a peak to a trough of a portfolio, before a new peak
is attained. MDD is an indicator used to assess the relative



riskiness of one’s trading strategy versus another. For risk-
averse investors, a low MDD is preferred as they would avoid
trading with periods of high losses.

MDD =
Trough V alue− Peak V alue

Peak V alue
(4)

IV. MODELS AND METHODS

This section unfolds the models and methods used to
analyze weather positive trading performance can be achieved
with machine learning. The first part of the analysis optimized
the four methods, namely Neural Networks (NN), Convolu-
tional Neural Networks (CNN), Long Short Term Memory
(LSTM) and Random Forest (RF), on every single asset.
Optimization of machine learning models in financial trading
is a complicated topic where a lot of research is still on-
going. In addition, the main discoveries remain secretes for
obvious economical reasons. Thus, the goal of the optimization
performed in this project was not to obtain the best absolute
trading metrics performances. In fact, the analysis of the
architecture of the methods -mentioned hereafter- was not the
main focus of the tuning. The structure of the methods is
then the same for each single asset and was determined with
satisfying results for the trading metrics, and in order to have
approximately the same number of parameters independently
of the method (103 for NN, 109 for CNN, 91 for LSTM). The
four methods implemented are explained hereafter. The first
section tries to reproduce the analysis of Wildi et al.(2019)
using the same architecture of a feed-forward neural networks
but applied on a broader time period. The three others analyze
weather positive trading performances can be achieved with
other methods. These methods can be split in two categories:
Neural nets that include Feed-forward neural networks (NN),
Convolutional Neural Networks (CNN), Long-Short-Term-
Mermory (LSTM) and Random Forest which is a different
kind of machine learning method.

A. Neural Networks

Recall that the goal is to forecast the log-return at time (t+1)
of an asset based on a sequence of the previous log-returns
of the asset. Therefore, for the following neural networks we
try to minimize the Mean-Squared-Error (MSE) loss during
training. Since the trading strategy is only based on the sign of
the forcasted output, one could simply train a binary classifier
with a logistic loss. But forecasting the log-returns allow to
get more information and the trading strategy could then be
adjusted in consequence. The following networks have been
trained using PyTorch library with GPU capability on Google
Colab. The implementation is available here [10]. Also, since
the considered data sets are small, it has been chosen to train
the networks using full-batch gradient descent using Rprop
optimizer. Rprop, short for resilient backpropagation, tries
to resolve the problem that gradients may vary widely in
magnitudes. For full-batch learning this problem can be solved
by only using the sign of the gradient. Finally, for the task of
forecasting financial time-series, neural networks are highly
subjects to convergence toward local optimum. Therefore,

each of the following neural nets are trained 100 times with
different random initialization to form an ensemble of models
(ensemble learning). The output of the ensemble is then taken
as the median of the output of the 100 sub-models (majority
vote). The following section describe the architecture of each
type of sub-models.

1) Feed-Forward: The feedforward neural networks are
composed of two hidden layers of dimensions six and three.
Each layers are followed by a Relu-activation function.

2) Convolutional: To expand the analysis further, a convo-
lutional neural network is implemented with two hidden layers
before being flattened to end up with a fully connected neural
network. There are two convolutional layers. The first one with
8 channels, a stride of 1, a kernel size of 3 and no-padding.
The second one with 4 channels, a stride of 1, a kernel size of
1 and no-padding. The Relu-activation function is used after
each convolutional layer and the weights.

3) LSTM: A Long Short Term Memory (LSTM) is imple-
mented. Two LSTM are concatenated and each layer has two
hidden features.

B. Random forest

A random forest regressor is also implemented using Scikit-
Learn library. The random forest model is composed of 10000
estimators.

C. Optimization

It was found that neural networks quickly overfits. To adress
this problem, several regularization techniques have been
experimented such that L1-regularization, L2-regularization,
dropout or even early stopping by tracking the validation
losses during training. None of them were conclusive, the only
effect of these regularizations was to decrease the difference
between train and validation losses by actually decreasing
the performances on the train set. So finally, with our fixed
architecture, the hyper-parameter that impacts the most the
performances is the learning rate. Thus, the optimization is
determined by finding the learning rate, via grid search for ten
values evenly distributed in the log-interval [0.0001 ; 0.001],
that gives the best hit rate on the validation set. It is, indeed,
the most relevant metric in this project because the hit rate
is often proportional to the sharpe ratio (it is usually not the
case for strong variations). It is also important to notice that
the hit rate oscillates depending on the number of training’s
epochs. A convergence, however, is noticed when 500 epochs
are computed, see Fig.2. The training is then performed on this
number of epochs to optimize the different methods. To speed-
up the process, only 10 sub-models are assembled together. For
the random forest, the tuned hyper-parameter is the number of
maximum features, tuned via grid search again, taken during
the bootstrapping step.

Once the best models found for each asset, the performance
are computed on the test set and reported in section VI.

V. EXPERIMENTS

The goal here is to analyze weather the combination of
several models trained on the same data set with different



Fig. 2. Plot showing the convergence of the hit rate when computing 500
epochs

accuracy allows to make better predictions compared to the
predictions of the best of the four models. One could think
that each model learns something from the data in a possible
different way that could contribute to improve the predictions
when the results are combined.

In a second part, the analysis focused on all the nine assets
to investigate weather the models’ predictions are improved
when one combines the best model trained on the assets of the
same type. In other words, if what is learnt on a different asset
of the same type (cryptocurrencies, commodities or market
indices) can improve the predictions on one asset in particular.

The log return of the combination of the models on each
data set is then measured by taking the mean, the median
and absolute maximum of the log-returns of each model. The
results reported in the Table II and III are the best values
obtained between the latter three strategies.

VI. RESULTS

The following Table II and Table III resume the hit rates
and sharpe ratios of the best models for each asset as well as
the comparison with the Buy & Hold strategy and two combi-
nations of models. Combination 1 states for the combination
of the 4 best models trained on the same asset. Combination
2 stands for the combination of the 3 best models trained on
the asset of the same type. The results in bold represents the
best model for each asset. The metrics of the combinations
are highlighted in green when their performances are better
than the best model alone. The Buy & Hold is in red when
the models’ and combination metrics performances could not
reach higher values.

VII. DISCUSSION

The first result to notice is that positive trading performances
can be achieved with one optimized model but it depends on
the asset. The assets Oil and CAC40 do not show positive
results when compared with the Buy & Hold. Overall, CNN
and LSTM are the ones that perform the best. Random
forest is also more accurate for the gold. The models are
already satisfying considering that their architectures was not
optimized. Concerning the combinations, the first one, which

B&H NN CNN LSTM RF C1 C2
Bitcoin 0.473 0.457 0.446 0.479 0.459 0.451 0.505
Ethereum 0.490 0.457 0.490 0.481 0.475 0.488 0.497
Ripple 0.490 0.497 0.497 0.532 0.470 0.514 0.525
Nat. gas 0.516 0.518 0.519 0.494 0.498 0.505 0.502
Gold 0.493 0.502 0.511 0.477 0.512 0.509 0.514
Oil 0.562 0.492 0.508 0.527 0.522 0.525 0.536
S&P500 0.564 0.553 0.554 0.558 0.548 0.572 0.533
CAC40 0.548 0.520 0.526 0.528 0.498 0.504 0.520
SMI 0.535 0.507 0.511 0.506 0.488 0.517 0.546

TABLE II
HIT RATE COMPARISON FOR EACH ASSET

B&H NN CNN LSTM RF C1 C2
Bitcoin -1.163 -0.981 -2.066 -0.140 -2.020 -1.856 0.413
Ethereum -0.870 -0.560 -0.327 1.123 0.245 0.308 -0.404
Ripple -0.947 -0.143 0.521 1.191 -1.453 0.531 1.497
Nat. gas 0.743 0.523 1.107 -0.308 0.352 0.577 0.615
Gold 0.034 -0.056 -0.960 -0.468 0.305 -0.390 0.596
Oil 0.686 0.389 0.652 0.994 1.012 0.810 1.049
S&P500 0.518 0.833 0.801 0.768 0.090 1.136 0.551
CAC40 0.597 -0.192 0.702 0.499 -0.674 0.169 0.685
SMI 0.219 -0.588 -0.321 -0.367 -0.805 -0.400 0.522

TABLE III
SHARPE RATIO COMPARISON FOR EACH ASSET

combines the best optimized models of one asset, performs
worse than the best model alone, except for the S&P500. This
can be explained by the fact that some model learnt nothing
meaningful and thus worsen the overall performance of the
combination. However, the combination 2 shows significant
improvement compared to the best model alone. Indeed, for
five assets out of nine, it is the one with the best perfor-
mances when looking at the performance metrics. Here again
it depends on the type of assets. For the cryptocurrencies
and the commodities, the combination 2 often performs the
best which might be explained by the difference of inter-
dependence of the corresponding assets. The cryptocurrencies
and the commodities have both a worldwide scale whereas
the market indices depend on a region, USA for S&P500 and
Europe for CAC40 and SMI.

Overall, we observe that the cryptocurrencies are the assets
that have the best results from the machine learning models
when we look at the difference of performance between the
Buy & Hold and the models. This last result is consistent with
the results found by Wildi et al.(2019) [6] and questions the
pertinence of the EMH applied on cryptocurrencies.

VIII. SUMMARY

To conclude, the results obtained suggest positive trading
performances for almost each asset based on the comparison
with the Buy & Hold strategy. In addition, the combination of
the best models on the assets of same type allows an extra-gain
in the performance. The assets of a same type being similar,
each model can learn a different trend and when combining in
the accurate way, the trading performance results increased.

ACKNOWLEDGEMENTS

The authors thank Marc Wildi for hosting our project in his
lab and his helpful suggestions.



REFERENCES

[1] Fama EF (1970) Efficient capital markets: A review of theory and
empirical work. The Journal of Finance 25(2):383–417

[2] Urquhart A (2016) The inefficiency of bitcoin. Economics Letters 148:80
– 82

[3] Nadarajah S, Chu J (2017) On the inefficiency of bitcoin. Economics
Letters 150:6 – 9

[4] Bariviera AF (2017) The inefficiency of bitcoin revisited: A dynamic
approach. Economics Letters 161:1 – 42

[5] Sensoy A (2018) The inefficiency of bitcoin revisited: A high-frequency
analysis with alternative currencies. Finance Research Letters

[6] Bundi N, Wildi M (2019) Bitcoin and Market-(In)Efficiency: a Systematic
Time Series Approach.

[7] For Bitcoin, Ethereum and Ripple.
[8] For Natural Gas

For gold
For oil
For S&P500

[9] For CAC40 and SMI.
[10] Link to the github.

https://www.jstor.org/stable/2325486#metadata_info_tab_contents
https://www.jstor.org/stable/2325486#metadata_info_tab_contents
https://www.sciencedirect.com/science/article/pii/S0165176516303640
https://www.sciencedirect.com/science/article/pii/S0165176516304426
https://ideas.repec.org/a/eee/ecolet/v161y2017icp1-4.html
https://ideas.repec.org/a/eee/ecolet/v161y2017icp1-4.html
https://www.sciencedirect.com/science/article/pii/S1544612318302320
https://www.sciencedirect.com/science/article/pii/S1544612318302320
https://digitalcollection.zhaw.ch/bitstream/11475/19440/1/bitcoin_market_efficiency.pdf
https://digitalcollection.zhaw.ch/bitstream/11475/19440/1/bitcoin_market_efficiency.pdf
https://www.cryptodatadownload.com/data/bitstamp/
https://www.nasdaq.com/market-activity
https://data.nasdaq.com/data/LBMA/GOLD-gold-price-london-fixing
https://data.nasdaq.com/data/OPEC/ORB-opec-crude-oil-price
https://www.nasdaq.com/market-activity
https://finance.yahoo.com/
https://github.com/CS-433/ml-project-2-bogota/tree/main

	Introduction
	Data analysis
	Data collection
	Data pre-processing

	Financial prerequisites
	Hit rate
	Annualized Sharpe ratio
	Maximum Drawdown

	Models and Methods
	Neural Networks
	Feed-Forward
	Convolutional
	LSTM

	Random forest
	Optimization

	Experiments
	Results
	Discussion
	Summary
	References

