=PrL

CS-322 Introduction to database systems

Grand Comics Database Project

Team No : 40
Léon Delachaux 296093
Ralph El Haddad 302360
Tom MERY 297217

Spring 2022

Contents

I__Deliverable 1l 1
[1.1 Assumptions|. e e 1
LI.T Story]. o o 1
(L1.2 [ssue and Indicia Publisher|. oo 1
[LI3 SerfesandTssud 1
[1.1.4 Publisher, brand group and indicia publisher{ 2

(1.2 Entity Relationship Modello oo 3
[L2.1 Schemal 3
[1.2.2 Description| 5

(L3 Relational Modell o oo o 5
[L3.1 Remarks 10

[1.4 Data Cleaning and Transformation Discussion| 10
(LD General Comments 11
2__Deliverablel 12
2.1 Assumptions|. e 12
[2.2 Data loading and cleaning] oo 12
2.3 Query Implementation] 12
2.3.1 Query 1] 12
[2.3.2 Query 2| 13
[2.3.3 Query 3 14
2.3.4 Queryd 15
[2.3.50 Query Do 16
[2.3.6 Query 6 17
2.3.7 Query 7 18
2.3.8 Query 8 19
[2.3.9 Query 9] 20
[2.3.10 Query 10]. e 21

3 Deliverable 3| 22

[3.1 Query Implementation] 22
[B.1.1 Query 1| o o 22
[3.1.2 Query 2| 23
[B-1.3 Query 3] 24
[3.1.4 Query 4] 25
[3.1.5 Query d 26
[B.-1.6 Query 6]o 27
[B.1.7 Query 7 28
[B.1.8 Query 8 29
[3.1.9 Query 9] 30
[3.1.10 Query 10[. e 31
[B-1.IT Query 11]. o o 32
[3.1.12 Query 12. 33
[3.1.13 Query 13]. 34
[3.1.14 Query 14]. 35

[3.2 Query Performance Analysis — Indexing|. 37

3.3 General Commentsl Lo 38

(A Appendix]| 39

[A.l Provided ER Modell. o oo 39

(A2 Provided DDII. . . 0 0 0 0 0 0 0 39

[A.3 Constraints enablinglo 43

[A.4 Constraints disabling] oo 43

List of Figures

(1 KR Diagram without attributes|o L 3
[2 Entities and relationships with their attributesl 4
[3 Provided ER Diagram| o o 39

1 Deliverable 1

The main purpose of this first report is to explain and motivate the choices that has been made
while designing an ER model and a corresponding relational schema for the Grand Comics Database
(see documentation at docs.comics.org). The studied dataset is available at https://drive.
switch.ch/index.php/s/I8fQKctZc6P0joc.

1.1 Assumptions

Every assumptions that has been made on the data is motivated by an inspection on the given csv
files using Pandas library. All these assumptions are already represented on the ER diagram (see
1)) as they are only about participation and key constraints. But for clarity purpose a brief recap
is made in the following subsections.

1.1.1 Story

The data contained in the csv file of Story was found to be very dirty thus some assumptions had to
be made on the data. For example, it was observed that some stories do not have an issue id (this
has been checked by counting the number of null values for this attribute). However, it can seem
logical that a story without an issue can not physically exist. Also the number of story without
issue id was clearly negligible and most likely due to dirty data (144 over 1869594 instances). Thus
one can assume that a story must have at least one associated issue.

The same phenomenon has been noticed for the type id attribute: 166 over 1869594 instances
instances of story table do not have any type id. So in the same way one can assume that every
story must have at least one type id.

Finally, it is assumed that the issue in which the story was published should be unique.

1.1.2 Issue and Indicia Publisher

By inspecting the csv file for Issue table, it has been found that some issue does not have a value for
the attribute indicia publisher id, which might also look like a problem, but it has been decided
not to assume that it is correlated with dirty data.

However, one can notice that the field indicia publisher id only contains a number and if the
indicia_publisher id exists then it is unique.

1.1.3 Series and Issue

There are three different relationship sets involving Series and Issue entity sets.

The first thing is that every issue must be related to an entity from Series that is unique. One can
check on the csv file that every issue has actually an existing attribute series id of type int64.

docs.comics.org
https://drive.switch.ch/index.php/s/I8fQKctZc6POjoc
https://drive.switch.ch/index.php/s/I8fQKctZc6POjoc

The second one is that the series is supposed to have a first and a last issue. It might seem logical
to expect that any series have a first issue but maybe not a last. However, some series do not have
first and last issue. Actually, they correspond to series that does not have any issue.

1.1.4 Publisher, brand group and indicia publisher

Every brand group from the csv file has an existing publisher id and therefore is owned by a
master publisher. However, Brand group is not declared as a weak entity because one can for
example imagine that a brand group can change from one publisher to another. In fact, it is
logical to declare brand group as an independent entity set.

It also has been checked that every indicia publisher has a publisher id, and because Indi-
cia_publisher has a different role from publisher it was natural not to declare it as a weak entity.

Finally it is assumed that a brand group or an indicia publisher must have one master publisher.

1.2 Entity Relationship Model
1.2.1 Schema

Figure [I| shows the proposed ER diagram for the Grand Comics Database. In order to keep the
ER diagram readable it has been chosen to show only the entities and the relationship first, the
attributes of each entities are given in Figure [2] Section describes the nomenclature used.

@
Publisher_from

Publisher

Owned_by
Indicia_Publisher
Published_by

Brand_Group

Story_reprint

Story_of_type
Story_Type

origin

Series

Series_of_type

Series_Publication_Type

Issue Language

Issue_reprint

Issued_in

origin target

Figure 1: ER Diagram without attributes

Story Issue Series Indicia_Publisher
sid iid seid ipid
title number name name
feature series_id format publisher_id
issue_id indicia_publisher_id year_began country_id
script publication_date year_ended year_began
pencils price publication_dates year_ended
inks page_count first_issue_id is_surrogate
colors indicia_frequency last_issue_id notes
letters editing publisher_id url
editing notes country_id
Publisher
genre isbn language_id
pid
characters valid_isbn notes
name
synopsis barcode color
country_id
reprint_notes title dimensions
year_began
notes on_sale_date paper_stock
year_ended
type_id rating binding
notes
publishing_format
url
publication_type_id
Brand_Group
bgid
Country Language Story_Type
name
cid lid stid
year_began
code code name
year_ended
name name
Series_Publication_Type | | notes
Story_reprint Issue_reprint sptid url
srid irid name publisher_id

Figure 2: Entities and relationships with their attributes

1.2.2 Description

The nomenclature used to create the ER diagram is taken from where key constraints and
participation constraints are well defined in section 2.4 of this book. Here is the most useful
information:

e Entity sets are represented by a rectangle shape.
e Relationship sets are represented by a diamond shape.
e Primary key are underlined in Figure [2]

e When two entities are involved in a relationship and that the first entity has a relation with
at most one instance of the second entity, then the branch bound to the first entity is replaced
with an arrow pointing toward the relationship.

e If the participation of the entity is total (it has a relation with exactly one instance of the
second entity), the arrow is bold.

For Story reprint and Issue_reprint it has be decided to keep the id as an attributes even though
one could drop it (actually we were not sure if we could drop some unnecessary attributes from
the given csv files so we kept it).

1.3 Relational Model

In order to avoid redundancy and to not overload the report the relational model is directly given
in DDL where the resulting tables, keys, foreign keys, constraints, type, domain constraints and
nullable values are explicitly defined. Here are the most useful informations about the proposed
DDL :

e Domain constraints are expressed by defining a type for the attributes (built-in types com-
patible with Oracle).

e Relationships are defined using foreign key in the relevant entity sets as explained in the
following paragraph. The name given to these kind of constraints corresponds to the name
of the relationship sets in the ER diagram.

e Participation constraints are defined using NOT NULL clause. Primary key has to be NOT
NULL as well.

e The size is not specified for INTEGER type as the default size is large enough for the GCD
dataset.

e VARCHAR2 type as been preferred than CHAR type as it offers more flexibility by using
dynamic allocation memory.

e When specified the size of a VARCHAR2 is expressed in bytes.
e When an attribute can contain an arbitrary long string the size is not specified.

e When the size is known to be small then the size is set by overestimating the max size found
in the csv file for the given attributes (assuming that the strings is encoded in utf8).

e When the size is known to be limited but not small the most common length VARCHAR/(255)
is used since it’s large enough and it’s the maximum value encoded in 8 bits.

e There is no weak entity (instances of every entity sets can exist by itself) thus for foreign
key constraint with total participation noting is specified as ON DELETE NO ACTION and
ON UPDATE NO ACTION is already here by default.

e When a foreign key can be null (no total participation) ON DELETE SET NULL is specified.

It is important to mention that in the following relational model, except for Story reprint and
Issue_reprint, the relationship sets represented in the ER diagram are not translated in the rela-
tional model by a table. The relationships set are indeed translated by including the information
about the relationship set in the table corresponding to the entity set with the key. For instance,
instead of creating a table for the relationship Held by with a foreign key brand_group id from
Brand_ group entity set and foreign key publisher id from Publisher entity set, knowing that every
instance of Brand_ group has at most one associated instance of Publisher one could simply add
an attribute publisher id as a foreign key to Brand_ group.

This is possible since every relationship sets in the ER model involves at least one entity set which
has a key constraint specifying that every instance of it is in relation with at most one instance of
the other entity set. This approach has been preferred as none of the relationship set have specific
attributes and also this approach avoids creating a distinct table for every relationship set. The
only cons of this method is that some space could be wasted if for example several instances of
Brand__ group do not have a publisher id as with this approach one has to store null value for these
instances. In the proposed ER model most of the relationships include one entity set with total
participation thus this drawback does not apply. For the relationship with partial participation
it still has been chosen to use the same approach since it offers faster operations (joining table is
time-consuming).

DDL
01 | CREATE TABLE 'Story' (
02 'sid' INTEGER NOT NULL,
03 'title' VARCHAR2 (255),

|
|
|
04 | 'feature' VARCHAR2 (255),
|
|
|
|

05 'issue_id' INTEGER NOT NULL,
06 '"script' VARCHAR2,

07 'pencils' VARCHAR2(255),

08 "inks' VARCHAR2(255),

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

'colors' VARCHAR2 (255),
'letters' VARCHAR2 (255),
'editing' VARCHAR2 (255),
'genre' VARCHAR2 (255),

'characters'

VARCHAR2 ,

'synopsis' VARCHAR2,

'reprint_note
'notes

s' VARCHAR2 (255),

' VARCHAR2 (255),

'type_id' INTEGER NOT NULL,

PRIMARY KEY (

'sid'),

CONSTRAINT 'Issued_in'
FOREIGN KEY ('issue_id"')
REFERENCES 'Issue' ('iid'),
CONSTRAINT 'Story_of_type'
FOREIGN KEY ('type_id')
REFERENCES 'Story_Type' ('stid')

)

CREATE TABLE 'Iss

ue' (

'iid' INTEGER NOT NULL,
'number' VARCHAR2 (50),
'series_id' INTEGER NOT NULL,
'"indicia_publisher_id' INTEGER,

'publication_

dates' VARCHAR2 (255),

'price' VARCHAR2(50),

'page_count'

INTEGER ,

'indicia_frequency' VARCHAR2(50),
'editing' VARCHAR2 (255),

'notes' VARCHAR2 (255),

'isbn' VARCHAR2 (50),

'valid_isbn'

VARCHAR2 (50) ,

'barcode' VARCHAR2 (50),
'title' VARCHAR2 (255),

'on_sale_date

' VARCHAR2 (255) ,

'rating' VARCHAR2(50),

PRIMARY KEY (

'iid'),

UNIQUE ('isbn', 'wvalid_isbn', 'barcode'),
CONSTRAINT 'Issue_of'
FOREIGN KEY ('series_id')
REFERENCES 'Series' ('seid'),
CONSTRAINT 'Published_by'
FOREIGN KEY ('indicia_publisher_id"')
REFERENCES 'Indicia_Publisher'
ON DELETE SET NULL

)

CREATE TABLE 'Series' (
'seid' INTEGER NOT NULL,
'name' VARCHAR2 (255) NOT NULL,
'format' VARCHAR2 (255),

'year_began'
'year_ended'

INTEGER,
INTEGER ,

('ipid")

61 'publication_dates' VARCHAR2 (255),
62 'first_issue_id' INTEGER,

63 '"last_issue_id' INTEGER,

64 'publisher_id' INTEGER NOT NULL,
65 'country_id' INTEGER NOT NULL,

66 'language_id' INTEGER NOT NULL,

67 'notes' VARCHAR2 (255),

68 'color' VARCHAR2 (255),

69 '"dimensions' VARCHAR2 (255),

70 'paper_stock' VARCHAR2 (255),

71 'binding' VARCHAR2 (255),

72 'publishing_format' VARCHAR2(255),
73 'publication_type_id' INTEGER,

74 PRIAMRY KEY ('seid'),

75 CONSTRAINT 'First_issue_of'

76 FOREIGN KEY ('first_issue_id')
77 REFERENCES 'Issue' ('iid')

78 ON DELETE SET NULL,

79 CONSTRAINT 'Last_issue_of'

80 FOREIGN KEY ('last_issue_id')
81 REFERENCES 'Issue' ('iid"')

82 ON DELETE SET NULL,

83 CONSTRAINT 'Produces'

84 FOREIGN KEY ('publisher_id')

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 | REFERENCES 'Publisher' ('pid'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

86 CONSTRAINT 'Series_from'

87 FOREIGN KEY ('country_id"')

88 REFERENCES 'Country' ('cid'),

89 CONSTRAINT 'Written_in'

90 FOREIGN KEY ('language_id')

91 REFERENCES 'Language' ('lid'),

92 CONSTRAINT 'Series_of_type'

93 FOREIGN KEY ('publication_type_id')

94 REFERENCES 'Series_Publication_Type' ('sptid')

95 ON DELETE SET NULL

96)

97

98 CREATE TABLE 'Indicia_Publisher' (

99 '"ipid' INTEGER NOT NULL,

100 'name' VARCHAR2(255) NOT NULL,

101 'publisher_id' INTEGER NOT NULL,

102 'country_id' INTEGER NOT NULL,

103 'year_began' INTEGER,

104 'year_ended' INTEGER,

105 '"is_surrogate' INTEGER,

106 'notes' VARCHAR2 (255),

107 'url' VARCHAR2 (255),

108 PRIMARY KEY (ipid),

109 UNIQUE ('name'),

110 CHECK ((is_surrogate = 0) OR (is_surrogate = 1) OR (is_surrogate IS
NULL)),

111 | CONSTRAINT 'Owned_by'

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

FOREIGN KEY ('publisher_id')

REFERENCES
CONSTRAINT

'"Publisher' ('pid'),
'Indicia_from'

FOREIGN KEY ('country_id"')

REFERENCES

)

CREATE TABLE

'Publisher’

(

'pid' INTEGER NOT NULL,
'name' VARCHAR2 (255) NOT NULL,
_id' INTEGER NOT NULL,

'country

'year_began'
'year_ended'

'notes'’

'url' VARCHAR2 (255),
PRIMARY KEY ('pid'),

UNIQUE (

CONSTRAINT

INTEGER,
INTEGER,

VARCHAR2 (255) ,

'name '),

'Country’

('cid")

'Publisher_from'

FOREIGN KEY ('country_id"')

REFERENCES

)

CREATE TABLE

'year_began'
'year_ended'

'notes'’

'url' VARCHAR2 (255),

'publish

UNIQUE (

'Brand_Group'
'bgid' INTEGER NOT NULL,
'name' VARCHAR2(255) NOT NULL,

INTEGER ,
INTEGER,

VARCHAR2 (255) ,

'Country'’

(

('cid")

er_id' INTEGER NOT NULL,
PRIMARY KEY ('bgid'),

'name '),

CONSTRAINT 'Held_by'
FOREIGN KEY ('publisher_id')

REFERENCES

)

CREATE TABLE

'name' VARCHAR2(50),

'Story_Type'
'stid' INTEGER NOT NULL,

PRIMARY KEY ('sptid'),

UNIQUE (
)

CREATE TABLE
'sptid’

'name ')

(

'"Publisher' ('pid')

'Series_Publication_Type'

INTEGER NOT NULL,

'name' VARCHAR2(50) NOT NULL,
PRIMARY KEY ('sptid'),

UNIQUE (
)

CREATE TABLE

'name ')

'Language'

(

(

164 'lid' INTEGER NOT NULL,

|
165 | 'code' VARCHAR2(4) NOT NULL,
166 | 'name' VARCHAR2(50) NOT NULL,
167 | PRIMARY KEY ('1lid'),
168 | UNIQUE ('code')
169 |)
170 |
171 | CREATE TABLE 'Country' (
172 | 'cid' INTEGER NOT NULL,
173 | 'code' VARCHAR2(4) NOT NULL,
174 | 'name' VARCHAR2(50) NOT NULL,
175 | PRIMARY KEY ('cid'),
176 | UNIQUE ('code')
771)
178 |
179 | CREATE TABLE 'Story_reprint' (
180 | 'srid' INTEGER NOT NULL,
181 | 'origin_story_id' INTEGER NOT NULL,
182 | 'target_story_id' INTEGER NOT NULL,
183 | PRIMARY KEY ('origin_story_id', 'target_story_id'),
184 | FOREIGN KEY 'origin_story_id' REFERENCES 'Story' ('sid'),
185 | FOREIGN KEY 'target_story_id' REFERENCES 'Story' ('sid')
186 |);
187
188 | CREATE TABLE 'Issue_reprint' (
189 | 'irid' INTEGER NOT NULL,
190 | 'origin_issue_id' INTEGER NOT NULL,
191 | 'target_issue_id' INTEGER NOT NULL,
192 | PRIMARY KEY ('origin_issue_id', 'target_issue_id'),
193 | FOREIGN KEY 'origin_issue_id' REFERENCES 'Issue' ('iid'),
194 | FOREIGN KEY 'target_issue_id' REFERENCES 'Issue' ('iid')
195 |)

1.3.1 Remarks

We thought about adding some constraints such that, for example, an indicia publisher or a brand
group can not have the same url as their master publisher but did not find a way to do so.

1.4 Data Cleaning and Transformation Discussion

As we discussed in the first part, we found out that the csv file for Story was very dirty. We already
suggested that every story should have an issue and a type, but still there are a lot of cleaning to
do . For example, some rows have merged and as a consequence some titles have more than 1000
characters. For example, this is a title:

" Hi! Jack! Think fast! Catch!,Where Do We Stand?,237756,7,Lloyd Ostendorf (signed),Lloyd
Ostendorf (signed),?,?, drama; religious,,,,19 1673616,Friendly Enemy...,237756,7 Charles Raab

10

(signed),Charles Raab (signed),?,? adventure,,,,,19 1673617,Crossword Puzzle,237756,7 Bill Berry
?.Bill Berry 7.7,.,,0n inside front cover.,1 1673618,,,237756,,7,7,7, ,adventure,,,,,6 1673619,An-
nouncing 3 Separate Editions of Our Little Messenger,237755,7,7,7 typeset,,,,,,On back cover.,16
1673620,Man wanted" "

It would be good to remove the lines that have merged and clean the data before putting it in the
file again. We can replace these erroneous titles with a default title: "Story number " + id.

Moreover, we discussed the fact that some issues did not have an indicia publisher. We did not
decide to declare that an issue must have an indicia publisher but it could actually be a good
thing.

We can also assume that the first and last issue ids might not be accurate. To clean the first and
last issue ids, we group the issues by series id in the series-issues relationship table, then we sort
the issues by publication date and raise that the first issue id for each series should be equal to
the series’ first _issue id. If there is more than one issue for the series, we raise that the last issue
id should be equal to the last issue id. Then we can replace the erroneous ids with the correct
ones.

1.5 General Comments

All group members have contributed equally to this first delivrable.

11

2 Deliverable

From this part the ER model and the corresponding relational schema used are the ones provided
in appendix (see [A.1). The relational schema of the database has been implemented using the
provided DDL in appendix [A.2]

2.1 Assumptions

For the data loading, we assumed that the strings in the tables were encoded in UTF-8.

2.2 Data loading and cleaning

Before loading data, the constraints are disabled (see appendix . The data have been loaded
using SQL LOADER and Oracle Client. When type errors have been encountered (for example,
that the number should have 4 digits but has more), these data have been set manually as a
null value (for example, year value larger than 9999). The constraints are finally re-enabled after
loading using appendix [A.3]

2.3 Query Implementation

2.3.1 Query 1

Description

Through the first query we aim at selecting the brand group names located in the United States.

Then we show them in a table by descending order using the command "order by count(*) desc",
which means we start with brand group names that are most recurrent in the database.

SQL Implementation

01 SELECT brand.name

02 FROM GCD_BRAND_GROUP brand,

03 GCD_PUBLISHER publi,

04 GCD_INDICIA_PUBLISHER indicia,
05 STDDATA_COUNTRY country

|
|
|
|
|
06 | WHERE brand.publisher_id = publi.id
|
|
|
|
|

07 AND indicia.publisher_id = publi.id
08 AND indicia.country_id = country.id
09 AND country.name = 'United States'
10 GROUP BY brand.name

11 ORDER BY COUNT (*) DESC;

12

Results

Brand Group Name
Marvel

Disney Comics
Malibu

Shadowline
Legendary

DBPRO

Marvel Knights

A Romance! Magazine
Nelson

Crossgen

2099

Ultimate

Timely Comics
Heavy Hitters

Actual Ender’s Game
A Humorama Magazine
M-Tech

Pizza Hut
Spider-Man Group
Curtis Magazines

2.3.2 Query 2
Description

The second query selects IDs and names of publishers that have published albums in Italian. The
Publisher names are then sorted by descending Publisher ID, and both are shown in the table.

SQL Implementation

01 SELECT id, name

02 FROM GCD_PUBLISHER publi

03 WHERE id IN (

04 SELECT ser.publisher_id
05 FROM GCD_SERIES ser,

|
|
|
|
|
06 | GCD_SERIES_PUBLICATION_TYPE typ,
|
|
|
|
|

07 STDDATA_LANGUAGE 1lang

08 WHERE SER.PUBLICATION_TYPE_ID = typ.id
09 AND typ.name = 'album'

10 AND ser.language_id = lang.id

11 AND lang.name = 'Italian'

13

121)
13 | ORDER BY id DESC;

Results
Publisher ID | Publisher Name
10963 Cliquot
10355 Andrea Leggeri
10349 RW Edizioni
10209 Teven Age Entertainment
10056 Bel-Ami Edizioni
4881 001 Edizioni
3166 Rizzoli
2693 Panini
1177 Bonelli-Dargaud
969 Kappa Edizioni
845 Edizioni BD
442 EPC
440 Edizioni Llsola Trovata
397 Milano Libri Edizioni
324 Max Bunker Press
164 Sergio Bonelli Editore

2.3.3 Query 3
Description

In the third query, the goal is to select the name of series that have published books in Switzerland.
The Series names are then shown in the table in alphabetical order using the command "order
by".

SQL Implementation

01 | SELECT ser.name

02 | FROM GCD_SERIES ser,

03 | GCD_SERIES_PUBLICATION_TYPE typ,
04 | STDDATA_COUNTRY country

05 | WHERE ser.publication_type_id = typ.id
06 | AND typ.name = 'book'

07 | AND ser.country_id = country.id

08 | AND country.name = 'Switzerland'
09 | ORDER BY ser.name;

14

Results

Series Name

120 Rue de la Gare

25 images de la passion d’'un homme
Affentheater

Alack Sinner

Alans Kindheit

Alans Krieg

Das Geheimnis des Wiirgers
Den Letzten beissen die Hunde
Der Fotograf

Die Reportage

Ein Leben in China

Elender Krieg - Gesamtausgabe
Family Living

Gaza

Golem im Emmental

Jetzt kommt spéter

Le Soleil

Palédstina

Victor Levallois

Voyages et aventures surprenantes de Robinson Crusoé

2.3.4 Query 4
Description

In the fourth query, we count the number of series that started to get published in each year
between 1990 and 2017. The number of series that began in each year are then shown in the table,
with the years of beginning sorted in descending order.

SQL Implementation

| SELECT COUNT (*) AS n_series, year_began

| FROM GCD_SERIES

03 | WHERE year_began >= 1990 AND year_began <= 2017
| GROUP BY year_began

| ORDER BY year_began DESC;

15

Results

Number of Series | Year Began
172 2017
3185 2016
3421 2015
3401 2014
3390 2013
3217 2012
3473 2011
3519 2010
3180 2009
3128 2008
3039 2007
2895 2006
2771 2005
2414 2004
2330 2003
2118 2002
2002 2001
2033 2000
1995 1999
2070 1998

2.3.5 Query 5
Description

For the fifth query, we select the country names of non-Swiss publishers that have published series
in Switzerland. The country names are then shown in a table with no particular order.

SQL Implementation

01 | SELECT name

02 | FROM STDDATA_COUNTRY

03 | WHERE name != 'Switzerland' AND id IN (

04 | SELECT ser.country_id

05 | FROM GCD_SERIES ser, GCD_PUBLISHER publi

06 | WHERE ser.publisher_id = publi.id AND publi.id IN (

07 | SELECT publisher_id

08 | FROM GCD_SERIES ser, STDDATA_COUNTRY country

09 | WHERE ser.country_id = country.id AND country.name = 'Switzerland
'

10 |)

16

11);
Results
Country Name
Netherlands
Germany
France

2.3.6 Query 6

Description

In the sixth query we aim at selecting language names of series published outside of Switzerland
but whose publisher is located in Switzerland. To do so we first extract all country names except
Switzerland, and distinct language names thus avoiding redundancy. In a subquery, we select lan-
guage IDs of series that were published outside the publisher’s country, specifically in Switzerland.
The results are shown in the table.

SQL Implementation

01 | SELECT DISTINCT lang.name
02 | FROM STDDATA_COUNTRY country, STDDATA_LANGUAGE lang
03 | WHERE country.name != 'Switzerland' AND lang.id IN (
04 | SELECT ser.language_id
05 | FROM GCD_SERIES ser, GCD_PUBLISHER publi, STDDATA_COUNTRY cou
06 | WHERE ser.country_id != cou.id
07 | AND cou.name= 'Switzerland'
08 | AND ser.publisher_id = publi.id
09 | AND publi.country_id = cou.id
01);
Results
Language Name
German
French
Dutch

17

2.3.7 Query 7
Description
Through the seventh query we select the names of publishers located in the Netherlands and that

began publishing before 1995 and ended after 2000. The results are shown in reversed alphabetical
order in the table.

SQL Implementation

01 | SELECT publi.name
02 | FROM GCD_PUBLISHER publi, STDDATA_COUNTRY country
03 | WHERE publi.year_began < 1995
04 | AND publi.year_ended > 2000
05 | AND publi.country_id = country.id
06 | AND country.name = 'Netherlands'
07 | ORDER BY publi.name DESC;
Results

Publisher Name
Wolters-Noordhoff

Wavery Productions

Van Holkema & Warendorf
Unie van Waterschappen
Uitgeverij M

Stivoro

Stichting Propria Cures
Nieuwsblad van het Noorden
Mondria

Maaike Hartjes

Drukwerk

De Vrijbuiter

De Stripper

De Banier

DRoodkoopren knoop
Bzztoh

Bee Dee

18

2.3.8 Query 8
Description
In the eighth query we select the names of publishers that have published series outside of the

country they are located in. We select distinct names to avoid redundancy in case a publisher has
published in many foreign countries. The results are shown in the table.

SQL Implementation

01 | SELECT DISTINCT publi.name

02 | FROM GCD_PUBLISHER publi, GCD_SERIES ser
|
|

03 WHERE publi.id = ser.publisher_id AND publi.country_id != ser.country_id
04 ORDER BY publi.name;
Results
Publisher Name
AK Press
APComics

Abiogenesis Press
Acme Press

Agéncia Portuguesa de Revistas
Aircel Publishing
Alpen Publishers
Amigo

Andina

Apocalypse

Associated Newspapers
Atomeka Press

Azeko

BSV - Williams

Beeld Beeld

Beta Publications

Bich

Bloomsbury

British Petroleum (BP)
Burnside

19

2.3.9 Query 9
Description

In ninth query we select countries where series have been published by foreign-based publishers,
and we count how many series have been published in each of them. The results are shown in the
table, in decreasing order of number of series published by foreign-based publishers.

SQL Implementation

01 | SELECT country.name, COUNT(*) AS n_occur
02 | FROM GCD_PUBLISHER publi, GCD_SERIES ser, STDDATA_COUNTRY country
03 | WHERE publi.id = ser.publisher_id
04 | AND publi.country_id != ser.country_id
05 | AND ser.country_id = country.id
06 | GROUP BY country.name
|

07 ORDER BY n_occur DESC;

Results

Country Name Number
Germany 184
United States 107
France 54
Netherlands 40
German Democratic Republic [former| | 30
Canada 27
United Kingdom 26
Belgium 20

Italy 14
Portugal
Sweden
Argentina
Mexico
(unknown)
Hong Kong
South Africa
Yugoslavia
Colombia

Austria
Chile

—

— NN W Wk OOt O

20

2.3.10 Query 10
Description

In the tenth query we count the number of publishers that have only ever published series outside
their country of location. To do so we select and count publishers that have never published series
in their home country, and have published series in foreign countries. The results are then shown
in the table.

SQL Implementation

01 | SELECT COUNT (%)
02 | FROM GCD_PUBLISHER publi
03 | WHERE NOT EXISTS (
04 | SELECT id
05 | FROM GCD_SERIES ser
06 | WHERE ser.country_id = publi.country_id
07 | AND ser.publisher_id = publi.id
08 |) AND EXISTS (
09 | SELECT id
10 | FROM GCD_SERIES ser
11 | WHERE ser.country_id != publi.country_id
12 | AND ser.publisher_id = publi.id
131)3
Results
Number
29

21

3 Deliverable 3

3.1 Query Implementation
3.1.1 Query 1
Description

Query 1 starts by selecting publisher names. In a sub-query, we count the number of distinct
series languages among the first ten publishers that began publishing the earliest. That explains
the sub-query where publisher IDs are selected among publishers ordered by ascending order of
"year began", and where "rownum" <= 10. The publisher names are then shown in the table
along with their corresponding series language count.

SQL Implementation

01 | SELECT P.NAME AS Publisher_Name, Series_Language_Count
02 | FROM GCD_PUBLISHER P, (

03 | SELECT PUBLISHER_ID, COUNT(DISTINCT LANGUAGE_ID) AS
Series_Language_Count

04 | FROM (

05 | SELECT PUBLISHER_ID, LANGUAGE_ID FROM GCD_SERIES

06 | WHERE PUBLISHER_ID IN (

07 | SELECT 1ID

08 | FROM (SELECT ID FROM GCD_PUBLISHER ORDER BY YEAR_BEGAN)

09 | WHERE ROWNUM <= 10

10 |)

11 |)

12 | GROUP BY PUBLISHER_ID

131)

14 | WHERE P.ID=PUBLISHER_ID;

22

Results

Publisher Name

Series Language Count

Turner

Wilhelm Prym Werke

Verlag C. H. Beck

Editorial Ibis Lda. / Livraria Bertrand S.A.R.L.
Schliitersche Verlagsgesellschaft

Livraria Bertrand Lda.

Exshaw

Sdu Uitgevers

Schwabe

Humphrey

e el e e VR = S =

3.1.2 Query 2

Description

Query 2 selects publisher names among publishers that have a series count of more than 500. The
count is made in the sub-query in the "from" clause: we count distinct publisher IDs in series to
get the series count per publisher. The count is distinct to avoid redundancy in case a series was
published several times by the same publisher. The publisher names are then shown in the table

in decreasing order of their respective series count.

SQL Implementation

01
02
03
04
05
06
07
08

SELECT P.NAME AS Publisher_Name, Series_Count

FROM GCD_PUBLISHER P, (

SELECT PUBLISHER_ID, COUNT(DISTINCT ID) AS Series_Count

FROM GCD_SERIES

GROUP BY PUBLISHER_ID
)
WHERE Series_Count >500 AND P.ID=PUBLISHER_ID
ORDER BY Series_Count DESC;

23

Results

Publisher Name Series Count
Marvel 7628
DC 6993
Dark Horse 2741
Image 2080
Panini Deutschland 1811
Fantagraphics 1385
Egmont Ehapa 1364
IDW 1344
Carlsen Comics [DE] 1282
Hjemmet / Egmont 947
Planeta DeAgostini 801
Panini Espana 728
Viz 703
Tokyopop (de) 669
Western 653
Boom! Studios 584
Dynamite Entertainment | 579
Malibu 572
Dupuis 562
Arboris 561

3.1.3 Query 3
Description

Query 3 selects brand group names that count at least 100 indicia publishers. To count the indicia
publishers, a sub-query is embedded to the from’ clause. In the sub-query we select and count
distinct indicia publisher IDs that match the brand group’s publisher IDs. The results are shown
in the table.

SQL Implementation

01 | SELECT NAME AS Brand_Group_Name , Count_ID

02 | FROM GCD_BRAND_GROUP BG, (

03 | SELECT BG.ID, COUNT(DISTINCT IP.ID) AS Count_ID
04 | FROM GCD_BRAND_GROUP BG, GCD_INDICIA_PUBLISHER IP
05 | WHERE BG.PUBLISHER_ID=IP.PUBLISHER_ID

06 | GROUP BY BG.ID

07 |) ID_COUNT

08 | WHERE BG.ID=ID_COUNT.ID AND Count_ID>100;

24

Results

Brand Group Name Count ID
Atlas 110
2099 110
Spider-Man Group 110
A Humorama Magazine | 110
A Lovers Magazine 110

A Romance! Magazine | 110
Actual Ender’s Game 110

Epic 110
Shadowline 110
Heavy Hitters 110
Flying Fanny The 110
Crossgen 110
Disney Comics 110
Marvel 110
Pumping Iron 110
Nelson 110
Pizza Hut 110
Marvel Knights 110
DBPRO 110
New Universe 110

3.1.4 Query 4
Description

Query 4 selects brand group names with the largest number of Belgian indicia publisher. We first
select brand groups among those that have at least indicia publisher in Belgium, and count how
many belgian IPs they have. We achieve that through the sub-query in the "from" clause. Then
we only keep the brand group names with the maximum number of belgian indicia publishers
through another sub-query, in the "where" clause. The results are shown in the table.

SQL Implementation

01 | SELECT BG.NAME AS Brand_Group_Name, Count_Belgian_IP AS
Largest_Number_of_Belgian_Indicia_Publishers

02 FROM GCD_BRAND_GROUP BG, (
03 SELECT BG.ID AS BG_ID, COUNT(*) AS Count_Belgian_IP
04 FROM GCD_INDICIA_PUBLISHER IP, STDDATA_COUNTRY C, GCD_BRAND_GROUP BG

06 AND C.NAME='Belgium'

|
|
|
05 | WHERE IP.COUNTRY_ID=C.ID
|
07 | AND BG.PUBLISHER_ID=IP.PUBLISHER_ID

25

08 | GROUP BY BG.ID

09 |1)

10 | WHERE BG.ID=BG_ID AND Count_Belgian_IP=(SELECT MAX(Count_Belgian_IP) FROM
(

11 SELECT BG.ID AS BG_ID, COUNT(*) AS Count_Belgian_IP
12 FROM GCD_INDICIA_PUBLISHER IP, STDDATA_COUNTRY C, GCD_BRAND_GROUP BG
13 WHERE IP.COUNTRY_ID=C.ID

|
|
|
14 | AND C.NAME='Belgium'
|
|
|
|

15 AND BG.PUBLISHER_ID=IP.PUBLISHER_ID

16 GROUP BY BG.ID

17)

18);

Results

Brand Group Name Largest Number of Belgian Indicia Publishers
Dupuis 11
Editions Dupuis 11
Collectie Vrolijke Vlucht | 11
RepéRages Dupuis 11
Dubbel Expresso Dupuis | 11
Dupuis; Pizza Hut 11
Vrije Vlucht 11
Spotlight 11
Uitgeverij Dupuis 11
Aire Libre 11
Puceron 11
Ukje 11
Expresso Dupuis 11
Graton 11
Mezzanine 11

3.1.5 Query 5
Description

Query 5 selects Indicia Publishers (IP) that have published at least 400 single-issue series. First
we select IP names among those that have single-issue series, and count them, using a sub-query in
the "from" clause. We identify single-issue series using "count" in a sub-sub-query in the "from"
clause of the sub-query. Finally we only keep IPs that have published at least 400 single-issue series
as shown in the query’s "where" clause. The results are shown in descending order of single-issue
series count in the table.

26

SQL Implementation

01 | SELECT IP.NAME AS Indicia_Publisher_Name, count2

02 | FROM GCD_INDICIA_PUBLISHER IP ,(

03 | SELECT IP.ID, COUNT(*) count?2

04 | FROM GCD_INDICIA_PUBLISHER IP, (

05 | SELECT INDICIA_PUBLISHER_ID, SERIES_ID, COUNT(*x) AS countil

06 | FROM GCD_ISSUE

07 | GROUP BY INDICIA_PUBLISHER_ID, SERIES_ID

08 |)

09 | WHERE countl = 1 AND IP.ID = INDICIA_PUBLISHER_ID

10 | GROUP BY IP.ID

11 |) Single_Issue

12 | WHERE count2>=400 AND Single_Issue.ID=IP.ID

13 | ORDER BY Count2 DESC;

Results

Indicia Publisher Name | Count
DC Comics 2759
Marvel Worldwide Inc. | 1040
Marvel Comics 783
Marvel Publishing Inc. | 603
Image Comics Inc. 479
Dark Horse Comics Inc. | 419

3.1.6 Query 6

Description

Query 6 displays the top 5 issues that have the most reprinted stories, with their story reprint
count. We selected issue IDs and their matching story IDs using the sub-query in the 'from’ clause.
The sub-query is used to count distinct issues for the same story, and to group these issues by
their common story ID. The sub-query also orders the count by decreasing order. Then the 'where’
clause selects the top 5 most reprinted stories using 'rownum <= 5’ and the results are shown in
the table.

SQL Implementation

01
02
03
04
05

| SELECT I.ID AS Issue_ID, ORIGIN_ID AS Story_ID, Count_Reprint

| FROM GCD_ISSUE I, (

| SELECT ORIGIN_ID, COUNT(DISTINCT TARGET_ID) AS Count_Reprint
| FROM GCD_STORY_REPRINT

| GROUP BY ORIGIN_ID

27

06 | ORDER BY Count_Reprint DESC
07 |) Reprint_count
08 | WHERE (ROWNUM <= 5) and (Reprint_count.ORIGIN_ID = I.ID);

Results

Issue ID | Story ID | Count
336676 | 1419829 | 90
17099 133435 52
17099 133434 43
92510 363431 36
555894 | 1804115 | 46

3.1.7 Query 7
Description

Query 7 shows heroes that are featured in stories of the three genres of humor, crime and romance.
We start by selecting features among those that participating in the stories, using a sub-query in
the 'from’ clause. The sub-query selects features and genres where the feature participated, i.e
where it "is not null". Then the query keeps the three genres humor, crime and romance and shows
features that have participated in all three ("having count (distinct genre) = 3’) in the table.

SQL Implementation

01 SELECT FEATURE

02 FROM (

03 SELECT S.FEATURE, SG.GENRE

04 FROM GCD_STORY S, GCD_STORY_TO_GENRE STG, GCD_STORY_GENRE SG
05 WHERE S.ID=STG.STORY_ID

|
|
|
|
|
06 | AND STG.GENRE_ID=SG.ID
|
|
|
|
|

o7 AND S.FEATURE IS NOT NULL

08)

09 WHERE GENRE IN ('humor', 'crime', 'romance')
10 GROUP BY FEATURE

11 HAVING COUNT(DISTINCT GENRE) = 3;

28

Results

Feature
Spider-Man
Archie

?

Family Funnies
Harvey Comics
Wolverine

G.I. Joe
Excursions
Dick Tracy

3.1.8 Query 8

Description

Query 8 extracts the year of publication of the database’s issues. We select distinct publication
dates using a sub-query in the 'from’ clause. In the sub-query, we extract the year from publication
dates that have the 'DD/MM/YYYY’ format, returning 'null’” when the format does not match
(on conversion error’). The query then only keeps dates that are not null and we show the result

in ascending order in the table.

SQL Implementation

01
02
03
04
05
06
07
08
09
10
11

SELECT DISTINCT PUBLICATION_DATE AS Extracted_Year_Values
FROM (
SELECT EXTRACT (
YEAR
FROM TO_DATE(PUBLICATION_DATE DEFAULT NULL ON CONVERSION ERROR,
'DD/MM/YYYY ')
) AS PUBLICATION_DATE
FROM GCD_ISSUE
)
WHERE PUBLICATION_DATE IS NOT NULL
ORDER BY PUBLICATION_DATE ASC;

29

Results

Extracted Year Values
15
22
56
57
69
71
77
82
88
91
1825
1826
1830
1831
1832
1834
1835
1888
1890
1893

3.1.9 Query 9

Description

Query 9 counts the number of times each of the dat formats 'DD/MM/YYYY’, 'MM/DD/YYYY’,
'MONTH/YYYY’ was used in the issue table. To count dates among each of the aforementioned
date formats, we used three sub-queries in the query’s from’ clause, with another sub-sub-query
in each sub-query’s 'from’ clause to select the wanted format in the same way as in query 8. The
final counts are shown in the table.

SQL Implementation

01
02
03
04
05
06
07
08

| SELECT COUNT_1 AS COUNT_DD_MM_YYYY,

| COUNT_2 AS COUNT_MM_DD_YYYY,

| COUNT_3 AS COUNT_MONTH_YYYY

| FROM (

| SELECT COUNT (PUBLICATION_DATE) AS COUNT_1

| FROM (

| SELECT TO_DATE(PUBLICATION_DATE DEFAULT NULL ON CONVERSION ERROR,
| 'DD/MM/YYYY')

30

09 | AS PUBLICATION_DATE
10 | FROM GCD_ISSUE
11 |)
21),
13 |1 (
14 | SELECT COUNT (PUBLICATION_DATE) AS COUNT_2
15 | FROM (
16 | SELECT TO_DATE(PUBLICATION_DATE DEFAULT NULL ON CONVERSION ERROR,
17 | "MM/DD/YYYY"')
18 | AS PUBLICATION_DATE
19 | FROM GCD_ISSUE
20 |)
21 |),
22 | (
23 | SELECT COUNT (PUBLICATION_DATE) AS COUNT_3
24 | FROM (
25 | SELECT TO_DATE(PUBLICATION_DATE DEFAULT NULL ON CONVERSION ERROR,
26 | "MONTH YYYY')
27 | AS PUBLICATION_DATE
28 | FROM GCD_ISSUE
29 |)
301);
Results

Count DD/MM/YYYY | Count MM/DD/YYYY | Count MONTH/YYYY
18851 3969 217642

3.1.10 Query 10
Description

Query 10 shows the total number of issues per year between 1965 and 1975, including both years.
We counted among issues published in each year using a sub-query in the 'from’ clause, where we
extracted years among 'MONTH YYYY’ date formats, then only kept dates between 1965 and
1975 included. The results are shown in the table in ascending year order.

SQL Implementation

01 | SELECT COUNT(*) AS Count_Per_year, Year_Date

02 | FROM(

03 | SELECT EXTRACT (

04 | YEAR

05 | FROM TO_DATE(PUBLICATION_DATE DEFAULT NULL ON CONVERSION ERROR,
06 | "MONTH YYYY')

07 |) AS Year_Date

31

08
09)

| FROM GCD_ISSUE
|

10 | WHERE Year_Date>=1965 AND Year_Date<=1975
|
|

11 GROUP BY Year_Date
12 ORDER BY Year_Date;
Results

Count per Year | Year Date
1289 1965
1489 1966
1557 1967
1263 1968
1491 1969
1487 1970
1626 1971
1884 1972
2194 1973
1872 1974
2259 1975

3.1.11 Query 11
Description

Query 11 takes stories that have been reprinted at least 30 times. We select story titles among
those that have been reprinted at least 30 times using a sub-query in the ’from’ clause. The sub-
query counts story IDs that match in story and story reprint, then we only keep stories with a
count of at least 30 using "having count" and we order them in descending order of reprint count.
The results are shown in the table.

SQL Implementation

01 SELECT S.TITLE AS Story_Title, Reprint_count
02 FROM GCD_STORY S, (

03 SELECT S.ID, COUNT(*) AS Reprint_count
04 FROM GCD_STORY S, GCD_STORY_REPRINT SR

|
|
|
|
05 | WHERE S.ID=SR.0ORIGIN_ID
|
|
|
|
|

06 GROUP BY S.ID

07 HAVING COUNT (%) >=30

08 ORDER BY Reprint_count DESC
09) ID_TO_COUNT

10 WHERE S.ID=ID_TO_COUNT.ID;

32

Results

Story Title

Reprint Count

Spaghetti Brothers - historien om sgsknene Centobucchi
Spider-Man!

Verso l'ignoto

Spider Man

The Fantastic Four!

Le sortilége du haricot

Le nain de Corneloup

Spider-Man

Flash of Two Worlds!

Spider-Man vs. The Chameleon!

Is He Man or Monster or... Is He Both!
Out of the Darksome Hills

The Chameleon Strikes!

90
92
46
43
36
35
34
34
33
33
32
32
31
30

3.1.12 Query 12

Description

Query 12 returns the top 10 countries with the longest publishing time between 1600 and 2020,
along with the max years publishing and the average years per country. We start by selecting
country names among countries where publishers have published for the longest period, using a
sub-query in the from’ clause. A sub-sub-query is made in the sub-query’s ’from’ clause to select
publishing periods between 1600 and 2020 both included. Finally the original query only keeps

the top ten countries 'rownum <= 10’. The results are shown in the table.

SQL Implementation

o1 |
02 |
03 |
04 |
05 |
06 |
o7 |
08 |
09 |
10 |
11 |
12 |
13 |
14 |

SELECT C.NAME AS Country_Name,

Max_years AS Max_Years_Publishing_Per_Country,
Average_years AS Average_Years_Per_Country

FROM STDDATA_COUNTRY C, (

SELECT COUNTRY_ID,
MAX (Publishing_period) AS Max_years,

ROUND (AVG (Publishing_period), 4) AS Average_years

FROM (

SELECT COUNTRY_ID, YEAR_ENDED-YEAR_BEGAN AS Publishing_period

FROM GCD_PUBLISHER

WHERE YEAR_BEGAN>=1600
AND YEAR_BEGAN<=2020
AND YEAR_ENDED >=1600
AND YEAR_ENDED <=2020

33

15

|

16 | GROUP BY COUNTRY_ID

17 | ORDER BY Max_years DESC

81)

19 | WHERE C.ID=COUNTRY_ID AND ROWNUM<=10;

Results

Country Name Max Years Publishing Per Country | Average Years Per Country
Switzerland 206 47.2778
Germany 194 18.1682
Norway 165 22
Australia 159 15.8929
United Kingdom | 156 5.3946
France 150 15.8584
United States 150 4.0622
Belgium 129 9.2059
Netherlands 114 7.2655
Spain 76 15.8696

)

3.1.13 Query 13

Description

Query 13 returns all Marvel heroes that have appeared in Marvel-DC crossover stories. We start
by selecting distinct Marvel heroes in lower case to be able to compare strings. We first select the
features among features that appear in Marvel IP issues only, using a first sub-query in the 'from’
clause. The first sub-query has a sub-sub-query in its 'from’ clause that selects IDs and names
among Indicia Publishers that partially match 'marvel” ("where lower(name) like *%marvel%’)) and
not 'dc’. We also select among features that appear in ‘'marvel-dc’ crossovers using the second sub-
query, that is similar to the first but selects features from stories and issues where both 'marvel’
and 'd¢’ have a partial match. Finally the original query keeps crossover features that have a
partial match with marvel features, and the result is shown in the table.

SQL Implementation

01
02
03
04
05
06
07

| SELECT DISTINCT LOWER(marvel.FEATURE)

| FROM (SELECT DISTINCT S.FEATURE

| FROM GCD_STORY S, GCD_ISSUE I, (

| SELECT ID, NAME

| FROM GCD_INDICIA_PUBLISHER

| WHERE LOWER (NAME) LIKE 'Ymarvel?'
|) Marvel_IP

34

AND LOWER(NAME) NOT LIKE '%dc%'

'Y%marveld'

08
09 | AND S.FEATURE IS NOT NULL
10 |) marvel, (
11 | SELECT DISTINCT S.FEATURE
12 | FROM GCD_STORY S, GCD_ISSUE I, (
13 | SELECT ID, NAME
14 | FROM GCD_INDICIA_PUBLISHER
15 | WHERE LOWER (NAME) LIKE
16 |) Marvel_DC_IP
17 |
ID)
18 | AND S.FEATURE IS NOT NULL

19 |) dc_marvel
20 | WHERE LOWER(dc_marvel.feature) LIKE CONCAT(CONCAT('%', LOWER(marvel.
feature)), '%');

Results

WHERE (S.ISSUE_ID = I.ID) AND (I.INDICIA_PUBLISHER_ID = Marvel_IP.ID)

AND LOWER(NAME) LIKE '%dc%'

WHERE (S.ISSUE_ID = I.ID) AND (I.INDICIA_PUBLISHER_ID = Marvel_DC_IP.

Crossover Feature Heroes

batman

hulk

X-men

wizard
titan

it

0z
thor

superman
kitty pryde
doctor octopus
spider-man

wizard of oz

superman; spider-man

lex luthor; doctor octopus
superman and spider-man

3.1.14 Query 14

Description

Query 14 extracts the top 2 publishers by the number of series published for every country that
has at least 200 publishers. Using a sub-query 1 (line 03) in the 'from’ clause of the original query,
we select country IDs and partition the data into intermediate sub-tables ordered by descending
series count. Then using a sub-query 2 (line 06) we keep Publisher and Country IDs of publishers

35

having a series count of at least 200 (line 16). The series count is done using a sub-query 3 (line 08)
in sub-query (2)’s 'from’ clause. Finally in the original query, we only keep the top 2 publishing
countries for each sub-table, and we show the total results in the table.

SQL Implementation

01 | SELECT C.NAME AS Country_Name, P.NAME AS Publisher_Name

02 | FROM STDDATA_COUNTRY C, GCD_PUBLISHER P, (

03 | SELECT COUNTRY_ID AS C_ID, ID AS P_ID,
|

04 ROW_NUMBER () OVER(PARTITION BY COUNTRY_ID ORDER BY Series_count
DESC) AS Row_number

05 FROM (

06 SELECT P.ID, P.COUNTRY_ID, Series_count

07 FROM GCD_PUBLISHER P, (

08 SELECT PUBLISHER_ID, COUNT(*) AS Series_count

09 FROM GCD_SERIES

10 GROUP BY PUBLISHER_ID

11)

12 WHERE P.ID=PUBLISHER_ID AND COUNTRY_ID IN (

|
|
|
|
|
|
|
|
13 | SELECT COUNTRY_ID
|
|
|
|
|
|
|

14 FROM GCD_PUBLISHER

15 GROUP BY COUNTRY_ID

16 HAVING COUNT (*) >=200

17)

18)

19)

20 WHERE Row_number <=2 AND C.ID=C_ID AND P.ID=P_ID;

36

Results

Country Name

Publisher Name

Canada

Canada
Germany
Germany
Denmark
Denmark

France

France

United Kingdom
United Kingdom
Italy

Italy
Netherlands
Netherlands
Norway

Norway

Sweden

Sweden

United States
United States

Drawn & Quarterly
Bell Features

Panini Deutschland
Egmont Ehapa
Interpresse

Forlaget Carlsen
Panini France
Dargaud éditions

IPC

Titan

Arnoldo Mondadori Editore
Sergio Bonelli Editore
Arboris

Oberon

Hjemmet / Egmont
Semic

Semic

Egmont

Marvel

DC

3.2 Query Performance Analysis — Indexing

Below, we give the runtime of all the queries of deliverable 3 in seconds.

Query | Run 1 | Run 2 | Run 3

1

CO 1 O Ut = W N

11
12
13
14

0.049 | 0.057 | 0.051
0.047 | 0.048 | 0.044
0.011 | 0.025 | 0.012
0.012 | 0.010 | 0.010
0.244 | 0.224 | 0.214
0.171 | 0.179 | 0.177
0.782 | 0.823 | 0.774
1.179 | 1.177 | 1.229
3.813 | 3.837 | 3.894
1.516 | 1.519 | 1.499
0.211 | 0.213 | 0.212
0.005 | 0.006 | 0.006

5.13 | 5.208 | 5.164
0.06 | 0.064 | 0.061

37

We can see that the queries that takes more than one second are 13, 9, 10 and 8. However, not
all the queries can be optimized. For example, if we try to use indexes with queries 9 or 10 it will
not improve the performance as the columns on which we operate only contain strings.

The queries that we have been able to optimize using indexes are 2, 5 and 13. You can see the
results below given with the index that was created.

Query | Run 1 | Run 2 | Run 3 CREATE INDEX index0 ON
2 0.029 | 0.030 | 0.029 GCD_SERIES(PUBLISHER ID);
5 0.141 | 0.138 | 0.142 | GCD_ISSUE(series id, indicia publisher id);
13 4.578 | 4.599 | 4.555 GCD_STORY (issue_id);

For the query 2, the query plan shows a total cost of 3648 and the cost to access GCD _SERIES
is 3478. When we create the index and run the query, this cost drops to 229 and the total cost to
235. The GROUP BY and the equality condition on publisher id are done easier as we do not
need to do a full scan.

For the query 5, the total cost is given as 8974 and that corresponds mostly to the full scan on
GCD __ISSUE which has a cost of 8918. When we create the index this, the cost on GCD _ISSUE
drops to 987 and the total cost drops to 1043. Again, the index accelerate the runnin time on the
equality conditions

For the query 13, we have a total cost of 284994, and a consequent part of this cost is due to the
merged join with the equality on issue id from GCD _STORY with a cost 207300 that can be
reduced to 170272 thanks to the index.

3.3 General Comments

In query 7, one of the extracted Feature names is ’?’, which is due to dirty data (one of the heroes
name is unknown!). Also in query 11 a NULL value is present in the results. This value has
been kept as the reprint count is obtained by counting story ID meaning that this NULL value
correspond to one single ID.

References

[1] Ramakrishnan and Gehrke. Database Management Systems, 3rd edition. Mc Grawhill, 2003.

38

A Appendix

A.1 Provided ER Model

Indicia
Publisher

ey Series

Publisher
Country

In

Publisher

Parent
Publisher

Indicia
Publisher

Belongs
to Group

LED
Published

Language

Language

N

Series ot —
Fact Table

In
Country

Series Type

Has

Publishing
Format

Figure 3: Provided ER Diagram

A.2 Provided DDL
01 | create table STDDATA_LANGUAGE
02 | (
03 | 1D NUMBER (3) primary key,
04 | CODE VARCHAR2(3) unique not null,
05 | NAME VARCHAR2 (64)
06 |)
07 |
08 | create table STDDATA_COUNTRY
09 | (
10 | 1D NUMBER (3) primary key ,
11 | CODE VARCHAR2(4) unique not null,
12 | NAME VARCHAR2 (64)
131)3
14 |
15 | create table GCD_STORY_TYPE
161 (
17 | ID NUMBER (2) primary key,
18 | NAME VARCHAR2 (64)
91);
20 |

39

Format H

ot ‘ conr
Fact Table Reprint

In Issue

Story
Sto i K AT

Story Type

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

create table GCD_SERIES_PUBLICATION_TYPE

(

)

ID NUMBER (1) primary key,
NAME VARCHAR2(16)

create table GCD_SERIES_PUBLISHING_FORMAT

(

)

ID NUMBER (38) primary key,
PUBLISHING_FORMAT VARCHAR2(256) not null

create table GCD_PUBLISHER

(

)

URL VARCHAR2 (256) ,
NOTES VARCHAR2 (4000) ,
YEAR_ENDED NUMBER (4) ,
YEAR_BEGAN NUMBER (4) ,
COUNTRY_ID NUMBER(3),
NAME VARCHAR2 (256) ,
ID INTEGER primary key,
constraint GCD_PUBLISHER_COUNTRY_FK
foreign key (COUNTRY_ID) references STDDATA_COUNTRY (ID)

create table GCD_INDICIA_PUBLISHER

(

)

ID INTEGER primary key,
NAME VARCHAR2 (256) ,
PUBLISHER_ID INTEGER,
COUNTRY_ID NUMBER (3) ,
YEAR_BEGAN NUMBER (4) ,
YEAR_ENDED NUMBER (4) ,
IS_SURROGATE NUMBER (38),
NOTES VARCHAR2 (4000) ,
URL VARCHAR2 (256) ,
constraint GCD_INDICIA_PUBLISHER_COUNTRY_FK
foreign key (COUNTRY_ID) references STDDATA_COUNTRY(ID),
constraint GCD_INDICIA_PUBLISHER_PUBLISHER_FK
foreign key (PUBLISHER_ID) references GCD_PUBLISHER

create table GCD_BRAND_GROUP

(

ID NUMBER (38) primary key,
NAME VARCHAR2 (256) ,
YEAR_BEGAN NUMBER (4) ,

YEAR_ENDED NUMBER (4) ,

NOTES VARCHAR?2 (4000) ,

URL VARCHAR?2 (256) ,
PUBLISHER_ID INTEGER not null,
constraint GCD_BRAND_GROUP_PUB_FK

40

73 | foreign key (PUBLISHER_ID) references GCD_PUBLISHER(ID)
ICH DN

75 |

76 | create table GCD_ISSUE

77 1 (

78 | 1D NUMBER (38) primary key,
79 | EDITION_NUMBER VARCHAR2 (64) ,

80 | SERIES_ID NUMBER (38) ,

81 | INDICIA_PUBLISHER_ID INTEGER,

82 | PUBLICATION_DATE VARCHAR2 (64) ,

83 | PRICE NUMBER (38, 2),

84 | CURRENCY VARCHAR2 (26) ,

85 | PAGE_COUNT INTEGER ,

86 | INDICIA_FREQUENCY VARCHAR2 (256) ,

87 | EDITING VARCHAR2 (2048) ,

88 | NOTES VARCHAR2 (4000) ,

89 | ISBN VARCHAR2 (64) ,

90 | VALID_ISBN VARCHAR2 (16) ,

91 | BARCODE VARCHAR2 (64) ,

92 | TITLE VARCHAR2 (128) ,

93 | ON_SALE_DATE VARCHAR?2 (26) ,

94 | RATING VARCHAR2 (128)

95 |)

96 |

97 | create table GCD_ISSUE_REPRINT

98 | (

99 | 1D NUMBER (20) primary key,
100 | ORIGIN_ISSUE_ID NUMBER (20),

101 | TARGET_ISSUE_ID NUMBER (20),

102 | constraint GCD_ORIGIN_ISSUE_FK

103 | foreign key (ORIGIN_ISSUE_ID) references GCD_ISSUE,
104 | constraint GCD_TARGET_ISSUE_FK

105 | foreign key (TARGET_ISSUE_ID) references GCD_ISSUE
106 |)3

107 |

108 | create table GCD_STORY_GENRE

109 | (

110 | 1D NUMBER (3) primary key,

111 | GENRE VARCHAR2 (128) not null

112 |)3

113

114 | create table GCD_SERIES

115 | (

116 | 1D NUMBER (38) primary key,
117 | NAME VARCHAR2 (256) ,

118 | FORMAT VARCHAR2 (256) ,

119 | YEAR_BEGAN NUMBER (4) ,

120 | YEAR_ENDED NUMBER (4) ,

121 | PUBLICATION_DATES VARCHAR2 (128) ,

122 | FIRST_ISSUE_ID NUMBER (38) ,

123 | LAST_ISSUE_ID NUMBER (38) ,

124 | PUBLISHER_ID INTEGER,

41

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

COUNTRY_ID NUMBER (3) ,

LANGUAGE_ID NUMBER (3) ,

NOTES VARCHAR2 (4000) ,
COLOR VARCHAR2 (256) ,
DIMENSIONS VARCHAR2 (256) ,
PAPER_STOCK VARCHAR2 (256) ,
BINDING VARCHAR2 (256) ,

PUBLICATION_TYPE_ID NUMBER (1),
constraint GCD_SERIES_COUNTRY_FK
foreign key (COUNTRY_ID) references STDDATA_COUNTRY(ID),
constraint GCD_SERIES_FIRST_ISSUE_FK
foreign key (FIRST_ISSUE_ID) references GCD_ISSUE,
constraint GCD_SERIES_LANGUAGE_FK

foreign key (LANGUAGE_ID) references STDDATA_LANGUAGE(ID),

constraint GCD_SERIES_LAST_ISSUE_FK

foreign key (LAST_ISSUE_ID) references GCD_ISSUE,
constraint GCD_SERIES_PUBLICATION_TYPE_FK

foreign key (PUBLICATION_TYPE_ID) references
GCD_SERIES_PUBLICATION_TYPE,
constraint GCD_SERIES_PUBLISHER_FK

foreign key (PUBLISHER_ID) references GCD_PUBLISHER

)

create table GCD_SERIES_TO_PUBLISHING_FORMAT
(
SERIES_ID NUMBER (38) references GCD_SERIES,
PUBLISHING_FORMAT_ID NUMBER (38) references
GCD_SERIES_PUBLISHING_FORMAT,
constraint GCD_SERIES_TO_PUBLISHING_FORMAT_PK
primary key (SERIES_ID, PUBLISHING_FORMAT_ID)
)

create table GCD_STORY
(

ID NUMBER (38) primary key,

TITLE VARCHAR2 (512) ,

FEATURE VARCHAR2 (512) ,

ISSUE_ID NUMBER (38) not null references GCD_ISSUE(ID),
SCRIPT VARCHAR2 (2048) ,

PENCILS VARCHAR2 (2048) ,

INKS VARCHAR2 (2048) ,

COLORS VARCHAR2 (2048) ,

LETTERS VARCHAR?2 (2048) ,

EDITING VARCHAR2 (2048) ,

CHARACTERS VARCHAR2 (4000) ,

SYNOPSIS VARCHAR2 (4000) ,

REPRINT_NOTES VARCHAR2 (4000),

NOTES VARCHAR?2 (4000) ,

TYPE_ID NUMBER (2) references GCD_STORY_TYPE(ID)

)

create table GCD_STORY_REPRINT

42

175 (

176 1D NUMBER (20) primary key ,

177 ORIGIN_ID NUMBER(38) references GCD_STORY,
178 TARGET_ID NUMBER(38) references GCD_STORY
179);

180

181 create table GCD_STORY_TO_GENRE

182 (

183 STORY_ID NUMBER (38),

|
|
|
|
|
|
|
|
|
184 | GENRE_ID NUMBER (3),
|
|
|
|
|
|
|
|
|
|

185 constraint GCD_STORY_TO_GENRE_PK

186 primary key (STORY_ID, GENRE_ID),

187 constraint GCD_STORY_TO_GENRE_GENRE_FK

188 foreign key (GENRE_ID) references GCD_STORY_GENRE,

189 constraint GCD_STORY_TO_GENRE_STORY_FK

190 foreign key (STORY_ID) references GCD_STORY

191)

192

193 alter table GCD_ISSUE

194 add constraint GCD_ISSUE_SERIES_ID_FK foreign key (SERIES_ID) references

GCD_SERIES(ID);

A.3 Constraints enabling

01 | BEGIN

02 | FOR c IN

03 | (SELECT c.owner, c.table_name, c.constraint_name

04 | FROM user_constraints c, user_tables t

05 | WHERE c.table_name = t.table_name

06 | AND c.status = 'DISABLED'

07 | ORDER BY c.constraint_type)

08 | LOOP

09 | dbms_utility.exec_ddl_statement('alter table "' || c.owner || '
"."' || c.table_name || '" enable

10 | constraint ' || c.constraint_name);

11 | END LOOP;

12 | END;

A.4 Constraints disabling

01 | BEGIN

02 | FOR c¢c IN

03 | (SELECT c.owner, c.table_name, c.constraint_name
04 | FROM user_constraints c, user_tables t

05 | WHERE c.table_name = t.table_name

06 | AND c.status = 'ENABLED'

43

07
08
09
10

11
12
13

END;

AND NOT (t.iot_type IS NOT NULL AND c.constraint_type =

ORDER BY c.constraint_type DESC)

LOOP

dbms_utility.exec_ddl_statement ('alter table

"' || c.table_name ||
disable constraint
END LOOP;

rn

c.constraint_name) ;

44

c.owner

'P’)

	Deliverable 1
	Assumptions
	Story
	Issue and Indicia Publisher
	Series and Issue
	Publisher, brand group and indicia publisher

	Entity Relationship Model
	Schema
	Description

	Relational Model
	Remarks

	Data Cleaning and Transformation Discussion
	General Comments

	Deliverable
	Assumptions
	Data loading and cleaning
	Query Implementation
	Query 1
	Query 2
	Query 3
	Query 4
	Query 5
	Query 6
	Query 7
	Query 8
	Query 9
	Query 10

	Deliverable 3
	Query Implementation
	Query 1
	Query 2
	Query 3
	Query 4
	Query 5
	Query 6
	Query 7
	Query 8
	Query 9
	Query 10
	Query 11
	Query 12
	Query 13
	Query 14

	Query Performance Analysis – Indexing
	General Comments

	Appendix
	Provided ER Model
	Provided DDL
	Constraints enabling
	Constraints disabling

