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Abstract—In this work, we present a new machine learning
method based on the Transformer neural network to detect eye
rubbing using a smartwatch. In ophthalmology, the accurate
detection and prevention of eye-rubbing could reduce incidence
and progression of ectasic disorders such as Keratoconus, and
prevent blindness. Our approach leverages the state-of-the-art
capabilities of the Transformer network, widely recognized for
its success in the field of natural language processing (NLP).
We evaluate our method against several baselines using a newly
collected dataset and achieve an impressive accuracy of 97%
with fine-tuning. Notably, our model operates in real-time on
an Apple Watch, enabling prompt detection and response. To
facilitate reproducibility, we publicly share our dataset and
methods. This research contributes to advancing eye rubbing
detection and establishes the groundwork for further studies
in hand-face interactions monitoring using smartwatches.

1. Introduction

Keratoconus is a progressive eye disease that affects the
cornea and can cause visual impairment and blindness if left
untreated. One of the risk factors for the development and
progression of keratoconus is eye rubbing, which can lead
to corneal thinning, ectasia and visual loss [1]. Although eye
rubbing is a common behavior, its frequency and duration
are difficult to measure objectively, which hinders efforts
to assess its impact on keratoconus and develop effective
interventions. To address this gap, the need for an objective
method of Eye-Rubbing detection is evident.

Accurate detection of unconscious daily gestures and
movement patterns has many potential applications in habits
tracking, hygiene, sports, self-improvement and specifically
in healthcare and disease prevention. Key habits to limit
transmission of infectious disease like the COVID-19, are
face touching avoidance, especially mucosal membranes
(eyes, nose, mouth) and regular hand-washing. It has been
estimated that face-touching occurs on average 23 times per
hour [2]. However although efforts have been made to detect

various hand-body interactions [3], [4], [5], face-touching
detection represents a challenge due to differentiating hand-
to-face proximity (in gestures such as glasses removal,
eating / drinking, smoking, hair brushing, or toothbrushing)
with actual contact. Moreover, differentiating high-risk mu-
cosal membrane contact with contact with skin, glasses, or
clothes is of primordial importance. Researchers have had
encouraging results but limited by either technical restraints
such as multiple or unpractical sensors, body instrumen-
tation with multiple devices, or artificial constraints such
as fixed pre-determined gestures [4], [6], [7]. Some have
achieved promising results, up to accurately predicting the
specific area of the face that was touched, however with-
out detecting actual contact, resulting in a high proportion
of false positives [8]. Although acceptable for preliminary
stages of development, in a real-life situation, increased rate
of false-positives will undoubtedly lead to users’ fatigability,
and prevent long-term use of such devices. It is therefore
key to further improve the face-touching detection as well
as the specificity of the notifications while preserving user-
friendliness, ease-of-use, and avoiding hardware encum-
brance.

Most studies base their algorithms on the readily avail-
able accelerometers, which have shown promises in detect-
ing some gestures such as body-tapping [3] but are limited
on their own when it comes to detecting face contact. Other
sensors have been investigated to improve results, such as
proximity Inertial Measurement Unit (IMU), gyroscopes,
or thermosensors, but never achieved expectations for real-
life scenario [8], [9], [10], [11]. Impressive results were
also obtained from sound, magnetic fields, conduction, or
pressure sensors [12], [13], [14], [15]. However these rely
on cumbersome devices, or an additional emitting device,
worn on the finger for example or even on smart textile
or skin-based sensors [16], [17], [18]. Some of the most
advanced results were obtained with a wrist-worn device
combined with strap-based infrared sensors [19], [20], im-
pedence tomography [21], force-sensitive sensors [22], or
photodiodes and LED measuring wrist-contour [23], [24].



These all achieved efficient finger recognition from wrist-
based sensors wearable on an every-day watch. In case of
face-touching recognition, it is key to be able to correctly
identify fingers’ subtle gestures and positions. None of these
however, can be usable in a daily-life situation.

In an attempt to compromise between state-of-the-art
technology, daily-life situation and user-friendliness, we
aimed to explore the boundaries of detection using mini-
mally invasive hardware, such as a wristband or smartwatch,
to assess the extent of its capabilities. While most current
smartwatches offer accelerometer, magnetometer, and gy-
roscope data, the Apple Watch® (Apple Inc.) stood out
as the only readily-available smartwatch that also provided
orientation data (roll, pitch, yaw), making it the chosen
device for our study.

2. Related Work

In the field of human activity recognition from wearable
sensor data, previous research has primarily focused on
the classification of general human activities like walking,
running, and swimming. End-to-end deep learning based
techniques are now widely used as they can simultane-
ously learn feature representation and classification using
supervised training, eliminating the need for manual feature
crafting. CNNs and LSTM networks have been extensively
used for these tasks. CNNs can extract spatial information,
while LSTM networks are well suited at modeling temporal
dependencies. Specifically, the combination of CNN with re-
current networks (DeepConvLSTM) [25] has shown notable
performances.

In recent years, the application of transformer models
in multivariate time series classification tasks, including hu-
man activity recognition, has been explored. A transformer
network is a type of neural network architecture that has
gained significant popularity in the field of natural language
processing (NLP). It was introduced in the paper ”Attention
Is All You Need” by Vaswani et al. in 2017 [26] and has
since become a cornerstone of many state-of-the-art NLP
models. In the context of human activity recognition, the
self-attention mechanism employed by transformers allows
them to attend to different elements of the input sequence,
enabling them to effectively identify and classify human
actions. A self-attention based neural network model that
foregoes recurrent architectures showed clear improvements
with respect to previous benchmark models (DeepConvL-
STM) on four different public datasets [27], [28].

Furthermore, unsupervised pre-training techniques have
been successfully applied to multivariate time series clas-
sification [29]. By leveraging large amounts of unlabeled
data, these techniques enable the model to learn meaningful
representations and features, which can be fine-tuned for
specific classification tasks.

While previous works have made significant contribu-
tions to the field of human activity recognition from wear-
able sensor data, the specific task of classifying hand-face
interactions remains relatively unexplored. Our approach
does not introduce new methodologies, it offers a novel

application of existing techniques to a specific domain. We
demonstrate the applicability and effectiveness of trans-
former models with self-attention and unsupervised pre-
training in the challenging task of classifying specific hand-
face interactions with smartwatch’s sensors. We also propose
different ways of collecting data while ensuring the capture
of genuine hand-face interactions in real-world scenarios.

3. Methods

Recall that the purpose of our study is to develop an
objective tool for detecting eye rubbing in order to, for
example, evaluate its relationship with ectatic corneal dis-
eases such as keratoconus. One of the difficulties, if not the
major one in this study, is to succeed in differentiating hand-
face interactions that are similar to each other. The solution
we propose, therefore, is to develop a machine learning
model capable of classifying the various possible hand-face
interactions from the sensor’s data of an AppleWatch. Fig.
1 illustrates the employed pipeline to achieve the desired
outcome.

Figure 1. Pipeline

In this section, after presenting the input features and
the output classes, we go through the methods used to build
the machine learning model.



3.1. Problem Statement

3.1.1. Input. The AppleWatch provides sensor’s measures
sampled at 50Hz. The signals are composed of the 19 fol-
lowing features provided by the sensors of the AppleWatch:

• Raw Accelerometers Data (see [30]):

– Acceleration x,y,z in G’s

• Processed Device-Motion Data (see [31]):

– Yaw, Roll, Pitch in rad.
– Rotation Rate x,y,z in rad/s.
– User Acceleration x,y,z in G’s
– Quaternion x,y,z,w
– Gravity x,y,z in G’s

3.1.2. Output. The classes of the classification task are
illustrated in Fig. 2.

Figure 2. Classes of the classification task

3.1.3. Real-time classification. To enable real-time oper-
ation on the Apple Watch, we utilize a sliding window
approach illustrated in Fig. 3. This approach involves di-
viding the continuous stream of sensor data into fixed-size
windows. Each window is then processed by the machine
learning model, extracting relevant features and performing
activity classification to recognize human activities. The
window size is set to 3 seconds, with a step size of 0.5
seconds. This configuration allows for classification every
0.5 seconds, utilizing the previous 3 seconds of sensor
signals for activity recognition.

3.2. Attention Based Model

The model presented in [27] has been adapted and imple-
mented for the purpose of classifying hand-face interactions.
The resulting architecture, depicted in the left part of Fig.
4, incorporates some modifications compared to the original
paper. Specifically, the sensor modality attention component
has been removed, as our scenario solely relies on data from
the AppleWatch sensors. Additionally, we have replaced
the simple positional encoding with a learnable positional
encoding, which has yielded improved results in our context.

Figure 3. Sliding window approach for real-time classification

3.2.1. Input Encoding. The model receives a time-window
of sensor values as input. A linear layer is applied to
transform the sensor features. As described in [29], each
sample X ∈ Rw×m (multivariate time series of length w
with m different variables) constitutes a sequence of w
feature vectors xt ∈ Rm : X ∈ Rw×m = [x1,x2, . . . ,xw].
The original feature vectors xt are linearly projected onto
a d-dimensional vector space, where d is the dimension
of the transformer model sequence element representations
(typically called embedding size):

ut = Wpxt + bp (1)

where Wp ∈ Rd×m,bp ∈ Rd are learnable parameters
and ut ∈ Rd, t = 0, . . . , w are the input vectors of the
transformer encoder. To incorporate positional information,
the model utilizes a fully learnable positional encoding.

3.2.2. Transformer Encoder. The resulting representation
of the input encoding is then fed into self-attention blocks.
Each block has two layers. The first is a multi-head self-
attention mechanism, and the second is a simple fully
connected feed-forward network as proposed in [26]. A
residual connection around each of the two sub-layers is
applied, followed by batch normalization. Note here that
batch normalization is used instead of layer normalization
proposed in [26], as batch normalization can mitigate the
effect of outlier values in time series, an issue that does
not arise in NLP word embeddings [29]. The output of
the transformer encoder is the final vector representations
zt ∈ Rd for each time-steps.

3.2.3. Global Temporal Attention. Following the methods
presented in [27], the representation zt ∈ Rd generated from



Figure 4. Left: Attention based model architecture [27]. Right: Training setup of the unsupervised pre-training task [29].

the transformer encoder is utilized by a global temporal at-
tention layer. This layer learns parameters to rank each time-
steps according to their respective importance for predicting
the corresponding class label for the window. The attention
score (ranking) is obtained through equation (3). The terms
Wg, bg and gz are learnable parameters.

gt = tanh (Wgzt + bg) (2)

αt =
exp

(
gt

Tgz

)∑
t exp (gtgz)

(3)

Then, the weighted average, f ∈ Rd, of the representa-
tions of all the time-steps is computed in equation (4).

f (i) =

w∑
t=1

αtz
(i)
t for i ∈ {1 ... d} (4)

Finally, the resulting representation f ∈ Rd is passed
through fully connected and softmax layers to obtain a
distribution over classes, and its cross-entropy with the cat-
egorical ground truth labels is the sample loss to minimize.

3.3. Unsupervised Pre-Training

Transformer-based models are highly expressive and
have a large number of parameters, allowing them to capture
intricate patterns in the data. However, this high model
complexity and capacity can be problematic when data is
limited. With fewer examples to learn from, the model may
quickly overfit by memorizing the training samples instead
of generalizing well to unseen data.

In our case, the limited number of labeled sequences
used during supervised learning led to overfitting. To ad-
dress this, [29] proposed for the first time a transformer-
based framework for unsupervised representation learning
of multivariate time series. This approach involves pre-
training the transformer encoder on unlabeled data to learn
meaningful representations, which can then be used for the
classification task. By leveraging unsupervised learning, the
model can benefit from a larger amount of data and improve
generalization performance.

The right part of Fig. 4 shows the training setup of
the unsupervised pre-training task. As proposed in [29],
a proportion r of each variable sequence in the input is
masked independently, such that across each variable, time
segments of mean length lm are masked, each followed by
an unmasked segment of mean length lu = 1−r

r lm. Here
lm = 3 and r = 0.15 as in [29].

A linear layer on top of the final vector representations
zt is used to make an estimation x̂t of the uncorrupted input
vectors xt:

x̂t = Wozt + bo (5)

Then, only the predictions on the masked values (with
indices in the set M ≡ {(t, i) : mt,i = 0}, where mt,i are
the elements of the mask M), are considered in the Mean
Squared Error loss for each data sample:

LMSE =
1

|M |
∑

(t,i)∈M

∑
M

(x̂(t, i)− x(t, i))2 (6)



4. Data Collection

4.1. Automatic Labelling

The data collection process with automatic labelling
setup is illustrated in Fig. 5.

Figure 5. Data collection with automatic labelling setup

The data collection task has been first achieved with
an automatic fine grained labeling using a computer vision
software, where OpenPifPaf [32] was the main tool for
user’s motion detection. The software is capable of detecting
the user’s actions and labeling the data from the wearable
device accordingly. The participants for the data collection
were to complete a 20 minutes session. The sessions were
composed of 5 sets each, with 4 minutes per set.

Figure 6. Classes used with the automatic labelling setup

While the computer vision was labeling, the sensor’s
data of the AppleWatch was recorded by another software
called SensorLog [33]. Based on the output of the com-
puter vision software (user id, class, start time [timestamp],

end time [timestamp]) and the output of the SensorLog
application (timestamp + 19 features from the sensors of
the AppleWatch), each sensor’s measure is labeled with the
associated user id and class. This data collection resulted in
signals (time-series of sensor’s data with variable lengths)
with a label corresponding to one of the classes shown in
Fig. 6.

The dataset collected with this setup has constituted a
foundational basis for several analyses. Based on the signal
statistics, we have set a window size of 3 seconds and a step
size of 0.5 seconds to segment the stream of sensor data for
real-time prediction. Furthermore, we have found that the
10 classes shown in Fig. 6 are scarcely distinguishable, even
for humans. Training any model on this classification task
resulted in poor performance. Therefore, we have chosen to
group the 10 classes into 4 more meaningful categories (i.e.,
eye rubbing, face touching, hair combing/skin scratching,
and teeth brushing), as depicted in Fig. 2.

However, as this data was recorded in a static position, in
an in-vitro setting, the resulting algorithm initially suffered
from a high rate of false positives. To overcome this issue,
another set of manually labeled data gathered directly from
a WatchOS application in real life setting was added. This
presented the added benefit of less pre-processing and data
cleaning steps as the automatically labelled data.

4.2. Manual Labelling

The data collection process with manual labelling setup
is illustrated in Fig. 7.

Figure 7. Data collection with manual labelling setup

Several participants were requested to perform hand-
face interactions while wearing the AppleWatch. The data
collection process was as follow: the participant engaged
in the data collection process by explicitly selecting an
action from the provided list. Once an action was cho-
sen, the participant had a 2-second window to reach the
designated start position. Following the 2-second interval,
a haptic feedback and a single ring sound signaled the
initiation of the action. The participant started the action at
this prompt, and the associated sensor’s data was recorded



over the subsequent 3 seconds. Upon completion of the 3-
second recording period, two haptic feedbacks with two ring
sounds were triggered. It was noted that the actual duration
of the participant’s action varied; however, what mattered
was that the onset of the action fell within the 3-second
window. Throughout the data collection, the participant was
encouraged to exhibit a diverse range of start positions and
perform natural movements.

4.3. Resulting Datasets

Table 1 summarize the statistics for each collected
dataset. The automatic labelling setup resulted in signals of
variable length. For those signals, we provide statistics of
the raw collected signals per user, presented as interactive
plots, here [34].

TABLE 1. STATISTICS OF THE COLLECTED DATASETS

Automatic Manual Total
Users 39 11 50

Classes 10 + 1 8 + 1 /
Signals 9531 2000 11531

Total Duration 16h 40min 1h 40min 18h 20min

Eye Rubbing Light: 612
Moderate: 606 400 1618

Eye Touching 560 100 660
Glasses Readjusting 538 100 638

Eating 535 100 635

Make Up Application: 282
Removal: 305 100 687

Hair Combing 505 200 705
Skin Scratching 555 200 755
Teeth Brushing 570 400 970

Nothing 4463 400 4863

The resulting dataset collected with the manual labelling
setup comprises sequences from 11 users (users 50 to 61).
Each user contributes a total of 100 sequences, except for
user 50, who contributes 1000 sequences. Each sequences is
a signal of 3 seconds of sensor’s data. In each user’s dataset,
an equal number of sequences is allocated for the five classes
depicted in Fig. 2. For classes that include sub-classes (e.g.,
face touching and hair combing/skin scratching), an equal
number of sequences is allocated for each sub-class. We
publicly share our datasets here.

5. Experiments

5.1. Evaluation Metric

Macro average F1-score is used as the evaluation metric
to compare the performance of the proposed approach with
other methods. F1-score for each class i is computed as
follows:

F1-Score i =
2× Precision i × Recall i

Precision i + Recall i
(7)

Then the macro average F1-score is calculated by aver-
aging the statistics for each label:

Macro F1-Score =
1

|C|
×

C∑
i=1

F1-Score i (8)

5.2. Train-Validation Split

To ensure an unbiased estimation of the model’s perfor-
mance, the sequences should be split in such a way that each
sequence in the training set comes from users who do not
have sequences in the validation set. This can be achieved
by splitting the sequences based on user IDs. Also, while
having overlapping windows in the training samples is not
an issue, the validation set should only be populated by non-
overlapping sequences.

As previously discussed, the dataset collected using au-
tomatic labeling resulted in a high number of false positives
after deployment on the watch and required heavy prepro-
cessing to be used for supervised training. Therefore, this
dataset was used exclusively for unsupervised pre-training.
The collected streams of sensor data were segmented using
a sliding window approach, employing a window size of 3
seconds and a step size of 3 seconds for both the training
and validation sets (no overlapping). Conversely, the dataset
collected using the manual labeling setup was solely used
for supervised training. The dataset are split as follow:

• Unsupervised Pre-Training:

– Train users: 10 to 38
– Validation users: 40 to 49

• Supervised Training:

– Train users: 50, 51, 53, 55, 56, 59, 60
– Validation users: 52, 54, 57, 58

The split for the unsupervised pre-training results in 17238
sequences in the training set and 2774 sequences in the
validation set. The split for the supervised training results
in 1600 sequences in the training set, with 320 sequences
in each of the 5 classes presented in Figure 2, and 400
sequences in the validation set, with 80 sequences per class.

5.3. Effectiveness of unsupervised pre-training

The effectiveness of the unsupervised pre-training
method proposed in [29] is evaluated. We trained four
versions of the attention-based model both from scratch
and using the unsupervised pre-training framework. We used
Adam optimizer with cosine warmup scheduler and GELU
activation functions.

For the pre-training of the transformer encoder, each
versions are pre-trained over 500 epochs using a learning
rate of 10−3, 6000 warmup iterations and a batch size of
128. The whole models are then trained for classification
over 20 epochs using a learning rate of 5 × 10−4, 200
warmup iterations and a batch size of 16. For regularization,
dropout of 10% and weight decay of 10−6 have been used.

https://temryl.github.io/HFI_DataVisualization/
https://drive.switch.ch/index.php/s/diA8OKfWmdf7mk1


TABLE 2. PERFORMANCES OF ATTENTION BASED MODEL TRAINED FROM SCRATCH VS. USING UNSUPERVISED PRE-TRAINING FOR DIFFERENT
TRANSFORMER ENCODER CONFIGURATIONS

Scratch Pre-Trained
Version Nb. Layers Embed. Size FC Size Nb. Heads Val. Loss F1 Val. Loss F1

v0 2 128 512 16 1.32 0.55 1.16 0.57
v1 4 128 512 4 1.30 0.60 1.01 0.63
v2 4 128 512 16 1.29 0.58 1.04 0.62
v3 3 256 256 16 1.33 0.56 1.05 0.60

Results shown in Table 2 confirm that unsupervised pre-
training offers a substantial performance benefit over fully
supervised learning both in term of classification perfor-
mance (F1-Score) and prediction confidence (cross entropy
loss).

5.4. Models comparison

We initially established a baseline using traditional ma-
chine learning techniques such as K-Nearest Neighbors,
Support Vector Machines, and Random Forest. For this
purpose, we utilized minimal handcrafted signal features
computed in the time domain to adhere to the real-time
classification constraint and computational resources avail-
able on the Apple Watch. These features include minimum,
maximum, mean, standard deviation, skewness, and kurtosis
computed for each of the 19 sensor channels. The number
of neighbors in KNN is set to 5. In the case of Random
Forest, the number of trees is set to 141, and the maximum
depth is set to 16.

TABLE 3. COMPARISON OF MODEL’S PERFORMANCES

Model Type Val. Loss F1-Score
KNN / 0.42
SVM / 0.54

Random Forest / 0.54
CNN 1.19 0.54

DeepConvLSTM 1.17 0.56
Transformer 1.01 0.63

We also compared the performances of conventional
CNN and DeepConvLSTM models with our best attention
based model (Transformer) version. We have implemented
the original architecture of DeepConvLSTM presented in
[25]. To recall, the DeepConvLSTM architecture consists
of four consecutive convolutional layers and two layers
of LSTMs. Each convolutional layer is composed with 64
filters, each with a size of 5 × 1. The convolutions are per-
formed across the time-steps. The output from the last con-
volutional layer is then passed through a two-layer LSTM,
where each LSTM layer has 128 hidden units. The final
output vector is connected to a fully connected layer, and
the softmax operation is applied to the resulting output. In
the fully connected layer, a dropout rate of 50% is applied.
The CNN model is obtained by simply removing the LSTM
layers from DeepConvLSTM. CNN and DeepConvLSTM
models are trained using Adam optimizer with One-Cycle-
LR scheduler and ReLU activation functions. Both models

are trained over 100 epochs using a learning rate of 5×10−4,
a batch size of 16 and a weight decay of 10−6.

Based on the results presented in Table 3, we confirm
that the attention-based model (Transformer) outperforms
both traditional machine learning and deep learning methods
by a significant margin.

5.5. Fine-tuning

The gestures and movements of each individual are sub-
ject to individual variations and are not easily generalizable
to an algorithm. This explains the poor results achieves on
the validation set (only 0.63 of F1-Score). Therefore, we
propose a fine-tuning step of the model.

We collected 200 sequences from a new participant (user
62) using the manual data labelling setup. Out of these,
100 sequences were used to fine-tune the attention-based
model that showed the best results on the validation set. The
performance of the fine-tuned model was then evaluated on
the remaining 100 sequences. When fine-tuning the models,
we allow training of all the weights.

Additionally, it is notable that half of the sequences in
the supervised training set originated from user 50. To gain
insights into the model’s performance specifically on user
50, we collected an additional 500 sequences exclusively
from that user. The evaluation was then conducted solely
on these newly collected sequences to assess the model’s
performance in this specific user context.

6. Results

Performances of the attention based model assessed on
the supervised validation set are shown in Fig. 8. Attention
based model reached a F1-Score of 0.63.

Performances of the fine-tuned attention based model
assessed on 100 sequences from the new participant are
shown in Fig. 9. Attention based model reached a F1-Score
of 0.81.

Performances of the attention based model assessed on
500 sequences from user 50 are shown in Fig. 10. Attention
based model reached a F1-Score of 0.95.

7. Discussion

In this work we first proposed a WatchOS app and a
data collection procedure that ensured the capture of genuine
hand-face interactions in real-world scenarios. Several other
studies have managed to report good results using more



Figure 8. Performances of the attention based model assessed on the
validation set (5 individuals, 500 sequences, 100 sequences per class).
Attention based model reached a F1-Score of 0.63

Figure 9. Performances of the fine-tuned attention based model assessed
on 100 sequences from the new participant, with 20 sequences per class.
Attention based model reached a F1-Score of 0.81

cumbersome devices or tailored and limited gestures [12],
[13], [14], [15]. The current method improves on these and
adds the challenge of achieving similar results solely with
a wrist-worn device.

Existing models for human activity recognition from
sensor reading, whether they are recurrent, convolutional,
or hybrid, face challenges in capturing the spatio-temporal
context information from the sequences. While CNNs excel
at capturing spatial information, LSTM networks were typ-
ically required to capture temporal information. However,
the Transformer architecture presents numerous advantages
over LSTM networks, such as parallel computation, efficient
capture of long-range dependencies with attention mecha-
nisms, and mitigation of sequential bias. Transformers are
also memory-efficient, scalable for larger sequences, and
offer interpretability. In this context, Mahmud and al. [27]
came up with a self-attention based neural network model

Figure 10. Performances of the attention based model assessed on 500
sequences from user 50, with 100 sequences per class. Attention based
model reached a F1-Score of 0.95

that foregoes recurrent architectures and utilizes different
types of attention mechanisms to generate higher dimen-
sional feature representation used for classification. They
performed extensive experiments on four popular publicly
available datasets: PAMAP2, Opportunity, Skoda and USC-
HAD and achieved significant performance improvement
over recent state-of-the-art models. Moreover, Zerveas et
al. [29] demonstrated the successful application of unsuper-
vised pre-training techniques in the realm of multivariate
time series classification. By utilizing extensive unlabeled
data, these techniques empower the model to acquire mean-
ingful representations and features that can be further refined
for specific classification tasks.

In our study, we demonstrated the substantial superiority
of the attention-based model (Transformer) over CNN and
DeepConvLSTM in accurately classifying specific hand-
face interactions using smartwatch sensors. These findings
provide strong evidence for the applicability and effective-
ness of Transformer models with self-attention in tackling
this challenging task. Additionally, our study confirmed that
unsupervised pre-training yielded substantial performance
improvements compared to fully supervised learning for this
particular task.

The strength of this study is that it managed to suc-
cessfully achieve promising results in predicting and differ-
entiating among hand-face interactions, and detecting eye
rubbing in a real life scenario, with the self-imposed chal-
lenges and technological restraints of a solely wrist-worn
device. Furthermore, the current algorithm can be further
improved by a proposed fine-tuning step based of either
100 sequences (approximately 20 minutes of data collection)
or 1000 sequences (approximately 3 hours) provided by
the user. Currently, this step is not automated but could
be further improved and facilitated in the near future by
constant feedback and fine-tuning from the device while
being worn, day after day.



8. Conclusion

In the current state, the trained model enables the de-
tection of eye rubbing at 64%, which increases to 80% and
97% with 100 and 1000 sequences respectively. These are
commendable results, demonstrating the feasibility of the
project, especially with the self-imposed technological re-
straints, but further improvement is still required in terms of
data collection and algorithm optimization. The current need
of a 3-hour-long fine-tuning step on a user to achieve good
results seems negligible once the algorithm is constantly
active and worn, and can benefit from constant feed-back
and real-time data collection.
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